## CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

STCW 78 as amended MANAGEMENT ENGINEER REG. III/2 (UNLIMITED)

040-35 - MATHEMATICS THURSDAY, 24 OCTOBER 2024 1315 - 1615 hrs

Materials to be supplied by examination centres

| Candidate's examination workbook<br>Graph paper |  |
|-------------------------------------------------|--|
| Examination paper inserts:                      |  |
|                                                 |  |
|                                                 |  |

## Notes for the guidance of candidates:

- 1. Examinations administered by SQA on behalf of the Maritime & Coastguard Agency
- 2. Non-programmable calculators may be used.
- All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer.
- 4. Candidates should note that 96 marks are allocated to this paper. To pass, candidates must achieve 48 marks.





## MATHEMATICS

Attempt SIX questions only.

All questions carry equal marks.

Marks for each part question are shown in brackets.

- 1. (a) THREE mooring lines exert horizontal forces on a bollard, positioned at O, as follows:
  - 32 kN at 40°
  - 18 kN at 65°
  - 25 kN at 110°

The angles are those that the forces make with the real axis Ox.

Determine, using complex numbers, the magnitude and direction of the resultant force on the bollard.

(8)

(8)

- (b) Given  $Z = \sqrt{2} \angle 45^{\circ}$ , determine  $Z + Z^{-1}$  as a complex number in polar form.
- (a) The crippling load P for a solid steel rod varies directly as the fourth power of its diameter d and indirectly as the square of its length, L.

A steel rod, 2.5m long and 4.5cm in diameter, used as a strut, fixed at both ends, has a crippling load of 235.2 kN.

Determine the crippling load of a similar strut, 3m long and 5cm in diameter.

- (8)
- (b) Express the following function of x as a single algebraic fraction in its simplest form:

$$\frac{14x-6}{2x^2-11x+12} + \frac{4x}{2x-3} - \frac{1}{x-4}$$
 (8)

3. The sag, d metres, in a cable of length, L metres, when suspended between two points and subject to a tension, T Newtons, may be determined from the formula:

$$d^2 - \frac{T}{\omega}d + \frac{1}{4}L^2 = 0$$

where  $\omega$  is the weight in Newtons per metre run.

Calculate, correct to two decimal places, the sag in the cable when 
$$T = 2\,200\,\text{N}$$
,  $L = 40\,\text{m}$  and the total weight of the cable  $= 220\,\text{N}$ . (8)

(b) Solve for x in the following equation:

$$\frac{3}{x^2 - 9} + \frac{2}{x - 3} = \frac{3}{x^2 - 2x - 3} \tag{8}$$

4. (a) Solve EACH of the following for x, correct to 3 decimal places:

(i) 
$$\log_e(e^x + 10) = 3;$$
 (4)

(ii) 
$$7 = 5e^{-0.4x}$$
. (4)

(b) Transpose the following formula to make V the subject:

$$t = CR \log_e \left(\frac{E}{V}\right) \tag{4}$$

(c) Express the following in its simplest form:

$$\frac{\left(a^3b^6\right)^{\frac{2}{3}}}{\sqrt{a^2b^4}} \tag{4}$$

5. (a) On the same set of axes plot the graphs, in intervals of 1, of

$$y_1 = 2x^2 + 5x - 6$$
 and  $y_2 = -x^2 - 2x + 8$  in the range  $-4 \le x \le 2$ .

Additional intermediate points may be plotted to aid the drawing of smooth curves.

Suggested scales: horizontal axis 
$$2 \text{ cm} = 1$$
  
vertical axis  $1 \text{ cm} = 1$  (12)

(b) Using the graphs plotted in Q5(a), solve, for x and y, the system of equations:

$$y = 2x^2 + 5x - 6$$

$$y = -x^2 - 2x + 8$$
(4)

(16)

6. Fig Q6 shows a double crank mechanism where AB is the frame.

The distance between the centres A and B is 18 cm.

The crank BC is 27 cm, the crank AD is 36 cm and the link CD is 33 cm.

In the position shown angle BAD is 80°.

Calculate the size of angle ABC for this position.

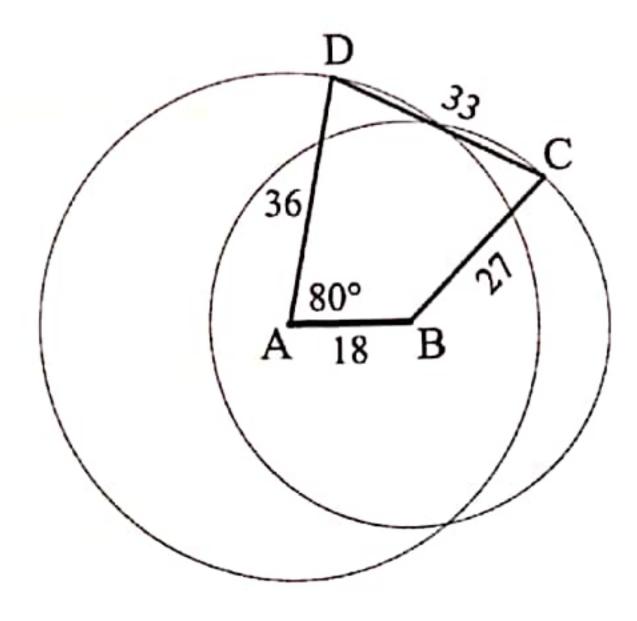


Fig Q6

7. (a) The volume of the square-based glass display case shown in Fig Q7(a) is 864cm<sup>3</sup>.

The length of the base is x cm and the base is not made of glass.

Determine EACH of the following for the display case:

- (i) an expression, in terms of x, for the area of glass, A cm<sup>2</sup>, in the case; (4)
- (ii) the dimensions of the case that minimise the amount of glass used; (6)
- (iii) the minimum area of glass used. (2)

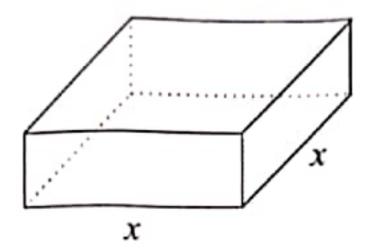


Fig Q7(a)

(b) Determine the first and second derivatives of the following function:

$$u = 3\sin\theta + \frac{1 - 4\sin^2\theta}{1 + 2\sin\theta} \tag{4}$$

- (a) The shape of a rugby ball may be represented by the rotation of the shaded area in Fig Q8(a), about the x axis, through one complete revolution.
  - Determine, using integral calculus, a formula for the volume of a rugby ball in terms of the constants a and b.
  - (ii) Use the result in Q8(a)(i) to calculate the volume of an adult size rugby ball which has a = 15 cm and b = 9.8 cm. (2)

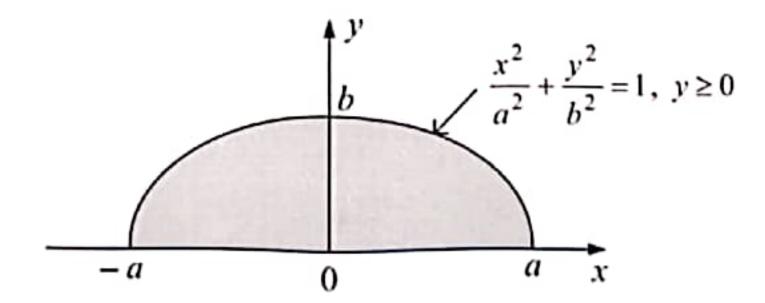


Fig Q8(a)

(b) Evaluate: 
$$\int_{0}^{\frac{\pi}{6}} \left( \frac{2 \sin \theta}{\tan \theta} \right) d\theta.$$
 (4)

The logic circuit shown in Fig Q9(a) has three inputs A, B and C, and one final output X.

Produce EACH of the following for this circuit:

- (i) a Boolean expression for output X in its simplest form; (3)
- (ii) the truth table, including columns for A, B, C,D,E and X; (3)

(4)

(iii) the equivalent logic circuit using only NAND gates (crossing out any redundant gates).

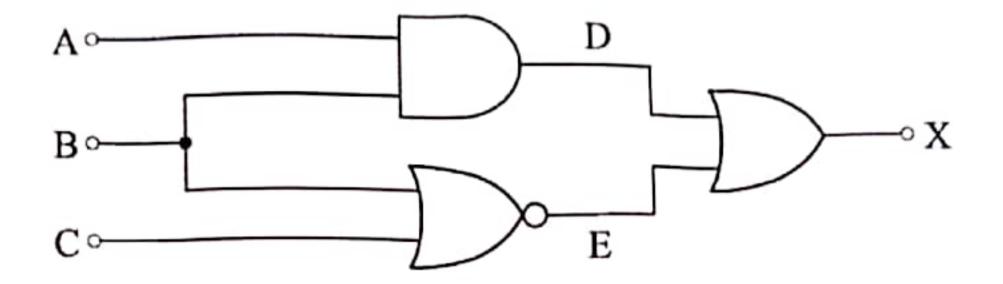


Fig Q9(a)

- (b) Determine EACH of the following, without using a calculator conversion function:
  - (i) the binary operation: 10101 × 1011; (2)
  - (ii) the hexadecimal operation: DA9C AE4F; (2)
  - (iii) the conversion of FADE<sub>16</sub> to binary. (2)