ELECTROTECHNOLOGY

Attempt SIX questions only.

All questions carry equal marks.

Marks for each part question are shown in brackets.

- 1. For the circuit shown in Fig Q1, determine EACH of the following:
 - (a) the value and direction, positive or negative, of currents I2, I3 and I4; (10)
 - (b) the voltage of Battery 1; (2)
 - (c) the power delivered by Battery 2. (4)

2. (a) A 68 μ F capacitor is charged from a 110 V d.c. supply via a 75 k Ω resistor for 5 seconds. This capacitor is then disconnected from the supply and a 47 μ F capacitor is charged from the same supply via the same resistor for 7 seconds.

Calculate EACH of the following:

- (i) the voltage to which each capacitor has charged; (7)
- (ii) the charge stored in each capacitor. (3)
- (b) The charged capacitors in Q2(a) are connected in parallel.

Calculate the final voltage across the parallel circuit. (6)

[OVER

3.	A th	ree-phase, 690 V, four wire unbalanced system has the following currents:	
		$I_R = 6 \text{ A}$, 0.8 lead $I_T = 8 \text{ A}$, 0.6 lag $I_N = 3 \text{ A leading } V_{RN}$ by 30°	
	(a)	Calculate EACH of the following:	
		(i) the current in the S phase;	(6)
		(ii) the phase angle of the S phase current with respect to the S phase voltage;	(2)
		(iii) the total reactive power.	(3)
	(b)	Sketch, approximately to scale, a labelled phasor diagram to show the relationship between all phase voltages and all currents.	(5)
4.	(a)	State TWO conditions which cause a generator's terminal voltage to change.	(2)
		Describe the function of a generator Automatic Voltage Regulator.	(2)
	(c)	Sketch and label a typical voltage/time characteristic for an AVR to show the response from a sudden increase in generator loading.	(3)
	(d)	Using the characteristic for Q4(c), identify EACH of the following and indicate typical values:	
		 maximum voltage dip recovery time steady-state voltage regulation 	(6)

(e) State the effects on a generator's loading, current and power factor when its AVR voltage setting is increased while it operates in parallel with another generator.

(3)

5.	A 4	40/110 V, single-phase transformer takes a no-load current of 2 A at 0.3 power for lag. The primary current is 90 A at power factor 0.7 lag.	
	(a)	Sketch a labelled phasor diagram to show the primary and secondary voltages and all currents (ignore winding impedance voltages).	(5)
	(b)	Calculate EACH of the following:	
		(i) the secondary current;	(6)
		(ii) the secondary power factor;	(2)
		(iii) the efficiency.	(3)
6.	(a)	Explain the term power factor correction.	(2)
	(b)	State ONE advantage of power factor correction.	(1)
	(c)	Sketch a labelled diagram to show how a motor starter and delta connected capacitor bank can be arranged to correct the power factor of an individual three-phase induction motor.	(4)
	(d)	Calculate the required capacitance per phase to achieve unity power factor if the motor in Q6(c) has a full-load reactive power of 4.82 kVAr when connected to a 440 V, 60 Hz supply.	(5)
	(e)	Explain why a star connected capacitor bank requires three times the capacitance per phase to achieve the same power factor correction as a delta connected capacitor bank for the same load.	(4)

7.	A syl	A three-phase, 2 MVA, 6.6 kV generator is driven at constant speed and has a synchronous reactance of 10 Ω/phase .				
		e generator supplies full-load current at 0.85 power factor lag and rated terminal ltage.				
	(a)	Sketch a labelled phasor diagram to show the relationship between the e.m.f. generated, the terminal voltage and the load current.	(4			
	(b)	Calculate the full-load voltage regulation.	(6			
	(c)	Sketch the terminal voltage/load current characteristic for the generator to show the change in voltage, from rated terminal voltage at full-load, 0.85 lag, when the load is disconnected.				
		Indicate full-load voltage and current and the generated e.m.f.	(4)			
	(d)	Using the axes in Q7(c), sketch the characteristics for disconnection of full-load at rated terminal voltage for the following load power factors, indicating the generated e.m.f. in EACH case:				
		unity0.85 lead.	(2)			
3.)	(a)	With reference to a three-phase synchronous motor:				
		(i) explain the operating principle;	(4)			
		(ii) explain why increased excitation is required as the load is increased;	(4)			
		(iii) state the effect on power factor if excitation is reduced with constant loading.	(1)			
	(b)	With reference to a cycloconverter control system for a ship's synchronous propulsion motor:				
		(i) describe how the system achieves starting and speed control;	(5)			
		(ii) state how the output frequency and voltage are controlled.	(2)			

- Sketch and label the forward and reverse current/voltage characteristics for a 9. thyristor showing the effect of increasing gate current.
 - (3)

- (b) Indicate on the characteristics in Q9(a) EACH of the following:
 - holding current IH; (i) (1)
 - (ii) latching current IL; (1)
 - forward breakover voltage VBO; (iii) (1)
 - (iv) reverse breakdown voltage VBR. (1)
- (c) State the conditions necessary to achieve EACH of the following for a thyristor:
 - (i) turn on; (2)
 - (ii) turn off. (1)
- (d) For the half-wave controlled rectifier circuit shown in Fig Q9:
 - describe the circuit operation; (i) (3)
 - sketch and label the supply and load voltage waveforms for a trigger angle of (ii) (3)

Fig Q9