ELECTROTECHNOLOGY

Attempt SIX questions only.

All questions carry equal marks.

Marks for each part question are shown in brackets

1.	A 110 V battery with internal resistance of 0.3 Ω , is connected in parallel with a 120 V d.c. generator with internal resistance 0.5 Ω . This parallel combination supplies a 5 Ω load.		
) Sketch a labelled circuit diagram.	(3)	
) Calculate EACH of the following:		
	(i) the battery current;	(8)	
	(ii) the load current.	(4)	
	State whether the battery is charging or discharging.	(1)	
2.	A 33 μ F capacitor is charged from a 100 V d.c. supply via a 47 k Ω resistor for 3 seconds. This capacitor is then disconnected from the supply and a 68 μ capacitor is charged from the same supply via the same resistor for 5 seconds. Calculate EACH of the following:	F or	
	(i) the voltage to which each capacitor has charged;	(8)	
	(ii) the charge stored in each capacitor.	(3)	
	The charged capacitors in Q2(a) are connected in parallel.		
	Calculate the final voltage across the parallel circuit.	(5)	

3.	An unbalanced, three-phase, star connected load is supplied from a four-wire, 440 V, 50 Hz supply. The current in EACH phase is:				
		• I _R = 7 A lagging VR by 30°			
		• $I_S = 5$ A in phase with V_S			
		• $I_T = 9 \text{ A leading } V_T \text{ by } 60^\circ$			
	(a)	 Sketch, approximately to scale, a labelled phasor diagram showing ph voltages and currents. 			
	(b)	Calculate EACH of the following:			
		(i) the neutral current;	(5)		
		(ii) the phase angle of the neutral current with respect to the S phase voltage;	(2)		
		(iii) the total power dissipated.	(6)		
4.	(a)	With reference to a three-phase synchronous motor:			
		(i) explain why the motor is not self-starting;	(3)		
		(ii) describe ONE starting method;	(2)		
		(iii) describe how the motor responds to increasing load if the excitation is constant;	(3)		
		(iv) state the effect on motor power factor if the excitation is reduced.	(1)		
	(b)	A 50 kW synchronous motor operates at full-load with an efficiency of 90% and power factor 0.92 lead.			
		Calculate EACH of the following motor input values:			
		(i) active power (kW);	(2)		
		(ii) reactive power (kVAr);	(3)		
		(iii) apparent power (kVA).	(2)		

5. Two, three-phase, four-pole generators operate in parallel and share a 3200 kVA load with a power factor of 0.75 lag. Both generators have linear characteristics with test results as shown in Table Q5.

GENERATOR	SPEED/kW	VOLTAGE/kVAr
64	1900 rev/min at no-load	460 V at no-load
G1	1825 rev/min at 900 kW	450 V at 400 kVAr
	1875 rev/min at no-load	455 V at no-load
G2	1850 rev/min at 400 kW	446 V at 1000 kVAr

		Table Q5		
	Determine EACH of the following:			
	(a)	the busbar frequency;	(7)	
	(b)	the busbar voltage;	(6)	
	(c)	the power factor of EACH generator.	(3)	
6.	(a)	Sketch a labelled circuit diagram for a 440V, step-down, star connected, three-phase autotransformer with 50%, 65% and 80% tappings. Indicate primary and secondary phase turns, voltages and currents.	(5)	
	(b)	State TWO advantages and the main disadvantage of an autotransformer compared to a double wound transformer.	(3)	
	(c)	A three-phase, 440 V induction motor having a full-load current of 75 A is connected to the 65% tappings of the autotransformer in $Q6(a)$. The motor starting current is 6 x full-load when started D.O.L.		
		Calculate EACH of the following at start:		
		(i) the current in each section of the transformer phases;	(4)	
		(ii) the voltage across each section of the transformer phases;	(3)	
		(iii) the motor line voltage.	(1)	

- 7. (a) With the aid of a labelled cross-sectional sketch, describe the construction of a four pole salient rotor for a synchronous generator.
- (6)
- (b) A three-phase, star connected, 500 kVA, 440 V generator has negligible stator winding resistance and synchronous reactance of 0.2 Ω /phase. The generator load demands full-load current at 0.8 power factor lag.
 - (i) Sketch a labelled phasor diagram to show the relationship between the generated e.m.f., the terminal voltage and the load current.
- (4)

(ii) Calculate the voltage regulation.

- (6)
- 8. (a) Referring to Fig Q8, which shows the cage rotor for a three-phase, 6 pole, 60 Hz induction motor:
 - (i) explain how torque is produced;

(5)

(ii) state the direction of rotation of the rotor:

(1)

(iii) explain why the rotor does not rotate at synchronous speed.

- (2)
- (b) Sketch and label a torque/speed characteristic for the motor, and indicate EACH of the following:
 - synchronous speed;
 - pull-out torque;
 - starting torque.

(5)

(c) Calculate the rotor speed if the slip is 4%.

(3)

Fig Q8

9. (a) Sketch a labelled circuit diagram for a full wave three-phase rectifier supplying a load resistor. Indicate the polarity of the load terminals. (5) (b) For the circuit sketched in Q9(a): summarise the circuit operation; (i) (2) state the diode conduction sequence for one cycle of the supply; (ii) (3) (iii) sketch the output voltage waveform and indicate the average voltage: (3) explain why a smaller value of capacitor is required to achieve the (iv) same peak-peak ripple compared to the value required for a single-

phase, full wave rectifier, assuming the same supply frequency.

(3)