CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

STCW 78 as amended MANAGEMENT ENGINEER REG. III/2 (UNLIMITED)

040-33 - ELECTROTECHNOLOGY

THURSDAY, 20 OCTOBER 2022

0915 - 1215 hrs

Materials to be supplied by examination centres

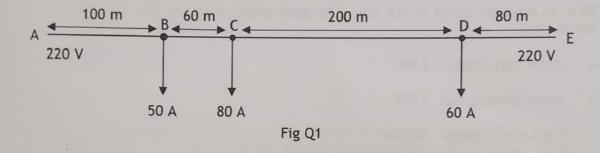
Candidate's examination workbook Graph paper

Examination	Paper	Inserts

- 1. Examinations administered by the SQA on behalf of the Maritime & Coastguard Agency.
- 2. Candidates should note that 96 marks are allocated to this paper. To pass, candidates must achieve 48 marks.
- 3. Non-programmable calculators may be used.
- 4. All formulae used must be stated and the method of working and all intermediate steps must be made clear in the answer.

ELECTROTECHNOLOGY

Attempt SIX questions only.


All questions carry equal marks.

Marks for each part question are shown in brackets

1. Fig Q1 shows a 220 V ring main. The cable resistance (go + return) is 0.003 Ω/m .

Calculate EACH of the following:

- (a) the resistance of each cable section AB, BC, CD and DE; (4)
- (b) the current in each cable section; (8)
- (c) the voltage at each load. (4)

2.8

- 2. A 56 μF capacitor and a 68 $k\Omega$ resistor are connected in series to a 15 V d.c. power supply.
 - (a) Calculate EACH of the following:
 - (i) the instantaneous current when the supply is switched on; (2)
 - (ii) the capacitor voltage 3 seconds after switch-on; 9185
 - (iii) the energy stored in the capacitor 3 seconds after switch-on. 2-79 x 10-4 (2)
 - (b) After 3 seconds of charging the supply is switched off and the capacitor is discharged through a 39 $k\Omega$ resistor.
 - (i) Calculate the time taken for the capacitor voltage to fall to 6 V. (3)
 - (ii) Using approximately scaled axes, sketch graphs of capacitor voltage against time for charge and discharge indicating:
 - the supply voltage and the voltage 3 seconds after switch-on
 - initial discharge voltage and the time when the voltage is 6 V (6)

	A TI	HREE-phase star connected load has a coil of inductance 0.2 H and resistance in EACH phase. The load is connected to a 415 V, 60 Hz supply.	
	(a)	Calculate EACH of the following:	(6)
		(i) the line current;	
		(ii) the load power factor;	(1)
		(iii) the active load power.	(2)
	(b)	THREE identical capacitors, arranged in delta, are connected to the supply to raise the power factor to unity.	
		Calculate the capacitor value.	(7)
١.	(a)	Sketch and label a power flow diagram for an induction motor.	(3)
	(b)	A THREE-phase, 440 V, 60 Hz, 6 pole induction motor draws a line current of 80 A at a power factor of 0.8 lag. The shaft speed is 19 rev/sec, and the losses are:	
		stator core losses 2 kW	
		stator winding loss 1 kW	
		mechanical losses 1.5 kW	
		Calculate EACH of the following:	
		(i) the slip;	(3)
		(ii) the rotor winding loss;	(6)
		(iii) the shaft output power;	(2)
		(iv) the efficiency.	(2)

		With reference to an incoming THREE-phase generator having the same phase	
7.	(a)	with reference to an incoming trives requence as an existing supply:	
		(i) list the THREE conditions which must be satisfied when synchronising the incoming generator;	(3)
		(ii) state how EACH condition required in Q7(a)(i) is controlled.	(2)
	(b)	having identical AVR and governor	
		Describe the effects resulting from EACH of the following:	
		(i) a faulty AVR causes a reduction in excitation of ONE generator;	(7)
		(ii) a faulty governor causes a loss of fuel supply to the prime mover of ONE generator.	(4)
8.	con	h reference to an electronic Variable Frequency Drive (VFD), which uses stant voltage/frequency (V/f) ratio to control the speed of a THREE-phase uction motor:	
	(a)	sketch a labelled block diagram;	(4)
	(b)	describe the purpose of EACH block sketched in Q8(a);	(4)
	(c)	explain why the V/f ratio needs to be constant;	(3)
	(d)	describe Pulse Width Modulation (PWM), stating how this technique controls the voltage and the frequency of the motor waveform.	(5)

- The alarm circuit in Fig Q9 shows a silicon transistor, a relay and a klaxon. 9.
 - (a) With reference to current flow, describe the operation of the circuit when S is closed.
 - (4)

- (b) State EACH of the following:
 - (1) (i) the type of transistor;
 - (1) (ii) ONE marine application for this circuit.
- (c) S is closed and $V_{BE} = -0.7 \text{ V}$, $V_{CE} = -0.3 \text{ V}$.

Calculate EACH of the following:

- (3) (i) the power dissipated by the relay coil;
- (4) (ii) the current gain of the transistor;
- (3) (iii) the power supplied to the circuit.

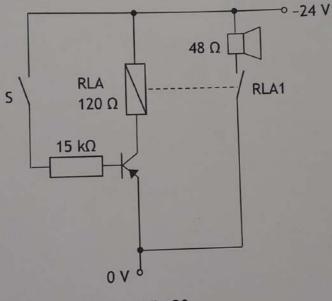


Fig Q9

5.	AII	TIRLE priase, 440 V, 60 Hz sha	ft generator supplies the following loads:	
		induction motors	200 kW, 0.7 lag	
		fluorescent lighting	14 kVA, 0.86 lag	
		incandescent lighting	5 kW, u.p.f.	
		navigation aids	27 A, 0.9 lag	
	(a)	Calculate EACH of the follow	The same of the sa	
		(i) the total active power s	supplied;	(4)
		(ii) the generator power fac	ctor.	(6)
	(b)	s motor is connected to the supply to raise the unity. The synchronous motor has an input power		
		Calculate EACH of the follow	wing for the synchronous motor:	
		(i) the power factor;		(4)
		(ii) the current.		(2)
6.	A 0.2 lag	power factor lag. At full-lo	ansformer takes a no-load current of 3 A at ad the primary current is 75 A at 0.6 power factor	
	(a)	Sketch a labelled phasor dia and all currents (ignore win	agram to show the primary and secondary voltages iding impedance voltages).	(5)
	(b)	Calculate EACH of the follow	wing:	
		(i) the full-load secondary	current;	(6)
		(ii) the secondary power fa	actor;	(2)
		(iii) the full-load efficiency		(3)

THREE-phase