CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

STCW 78 as amended MANAGEMENT ENGINEER REG. III/2 (UNLIMITED)

040-33 - ELECTROTECHNOLOGY						
THURSDAY, 31 MARCH 2022						
0915 - 1215 hrs						
Materials to be supplied by examination centres						
Candidate's examination workbook						
Graph paper						
Everyination Dancy luceute						
Examination Paper Inserts						
1 12 14						

- 1. Examinations administered by the SQA on behalf of the Maritime & Coastguard Agency.
- 2. Candidates should note that 96 marks are allocated to this paper. To pass, candidates must achieve 48 marks.
- 3. Non-programmable calculators may be used.
- 4. All formulae used must be stated and the method of working and all intermediate steps must be made clear in the answer.

ELECTROTECHNOLOGY

Attempt SIX questions only.

All questions carry equal marks.

Marks for each part question are shown in brackets.

For the circuit shown in Fig Q1, calculate EACH of the following:

- (a) the current in EACH battery; (10)
- (b) the load voltage; (3)
- (c) the load power.

A 600 μ F capacitor is charged from a 30 V d.c. supply via a 250 Ω resistor. When fully charged the capacitor is disconnected from the supply and connected across a 25 Ω resistor in order to be discharged.

Calculate EACH of the following:

- (a) the initial charging current; (2)
- (b) the capacitor voltage after 137 ms; (4)
- (c) the time taken for the capacitor to charge to 22 V; (3)
- (d) the initial discharge current; (2)
- (e) the discharge current after 30 ms; (3)
- (f) the resistor voltage after 30 ms of discharge. (2)

- THREE resistive loads of 50 $\Omega,$ 20 $\Omega,$ and 30 Ω are connected respectively in star 3. to the R, S, and T phases of a three-phase, 4-wire, 415 V, power supply.
 - (a) Determine EACH of the following:

(i)	the current in each load;	
(1)	the current in each toau,	

(3)

(ii) the current in the neutral wire;

(6)

(iii) the total power supplied to the load.

(3)

Sketch, approximately to scale, the phasor diagram of the load and neutral (b) currents.

(4)

A 100 kW, three-phase, star-connected, induction motor is operating at the following parameters:

Parameter	Value	Parameter	Value
Supply voltage	6,600 V /	Synchronous Speed	500 r.p.m /
Supply frequency	60 Hz /	Slip	1.7%
Power factor	0.86 lag /	Stator winding loss	2.5 kW /
Mechanical losses	1.3 kW /	Stator core loss	3.5 kW ′

(a) Determine EACH of the following:

(i) the rotor winding loss;

(3)

(ii) the line current;

(5)

(iii) the efficiency.

(2)

(b) Sketch a fully labelled power-flow diagram for the motor indicating power at EACH stage.

(6)

5.	A three-phase, 440 V, shaft-driven generator shares the total electrical load of a ship with an auxiliary diesel generator. An over-excited synchronous motor is used in the supply system for kVAr compensation.			
			o's total consumer load is 1 MW at 0.83 power factor lagging and the lous motor takes 40 kW.	
	(a)	Sket	ch a single-line diagram of the power system.	(3)
	(b) The shaft-driven generator is loaded to its rated output of 650 kW at uni power factor. The diesel generator is operated at a power factor 0.9 lagging.			
		Dete	ermine EACH of the following:	
		(i)	the kW and kVAr loading of the diesel generator;	(5)
		(ii)	the load current supplied by the diesel generator;	(2)
		(iii)	the power factor of the synchronous motor.	(6)
6.			hase, delta/star connected, step-down transformer has a turns ratio of supplies a 440 V, 450 kW load at a power factor of 0.82 lagging.	
	(a)	Sket	ch a labelled circuit diagram showing line and phase voltages.	(6)
	(b) Calculate EACH of the following:			
		(i)	secondary phase voltage;	(2)
		(ii)	secondary phase current;	(3)
		(iii)	primary phase voltage;	(2)
		(iv)	primary line current.	(3)

7.	(a)	Sketch and label the V/I characteristics of a three-phase generator operating at constant speed with EACH of the following load power factors:			
		(i)	unity;	(2)	
		(ii)	0.8 lagging;	(2)	
		(iii)	0.8 leading.	(2)	
	(b)	Explain why it is recommended that TWO <i>identical</i> a.c. generators running parallel should operate at similar power factors.			
	(c)	Explainde	ain how the power factor of paralled a.c. generators may be altered pendently of the ship's load power factor.	(5)	
8.	(a)	State instr	e the main reasons why switchboard instruments are supplied via ument transformers from the power circuits which they monitor.	(4)	
	(b)	Expla prima	ain why it is hazardous to open-circuit a current transformer whilst its ary is still energised.	(4)	
	(c) Sketch a circuit diagram showing an ammeter, a voltmeter and a wattmet fed from a single-phase supply via current and voltage transformers.			(4)	
=	(d)	An ar read	nmeter, a voltmeter and a wattmeter monitoring a single-phase supply 40 A, 240 V and 8 kW respectively.		
		Calcu	late the power factor of the circuit.	(4)	

- 9. Fig Q9 shows a transistor amplifier. The voltage between the transistor base and emitter is 0.6 V and the d.c. voltage at the output terminals is 8 V.
 - (a) Calculate EACH of the following, assuming that the base current is small enough to be neglected:
 - (i) the voltage between the collector and the emitter of the transistor; (4)
 - (ii) the power dissipated in the emitter resistor; (3)
 - (iii) the power dissipated in the transistor. (3)
 - (b) Sketch the circuit diagram shown in Fig Q9, adding the additional components needed to make the circuit suitable for amplifying a.c. signals. (3)
 - (c) State the purpose of the additional components sketched in Q9(b). (3)

