CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

STCW 78 as amended MANAGEMENT ENGINEER REG. III/2 (UNLIMITED)

O40-34 - NAVAL ARCHITECTURE

FRIDAY, 15 DECEMBER 2023

O915 - 1215 hrs

Materials to be supplied by examination centres

Candidate's examination workbook
Graph paper

Examination Paper Inserts

Notes for the guidance of candidates:

- 1. Examinations administered by SQA on behalf of the Maritime & Coastguard Agency
- Candidates should note that 96 marks are allocated to this paper. To pass, candidates must achieve 48 marks
- Non-programmable calculators may be used.
- All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer.

NAVAL ARCHITECTURE

Attempt SIX questions only.

All questions carry equal marks.

Marks for each part question are shown in brackets.

 A ship 102 m long floats at a draught of 6 m and in this condition the immersed cross sectional areas and waterplane areas are as given in Tables Q1(A) and Q1(B).

The equivalent base area (A_b) is required because of the fineness of the bottom shell.

Section	ΑР	1	2	3	4	5	FP
Immersed cross section area (m²)	12	29	64	78	70	48	0

Table Q1(A)

Draught (m)	0	0.6	1.2	2.4	3.6	4.8	6.0
Waterplane area (m²)	Ab	560	720	876	942	996	1028

Table Q1(B)

Calculate EACH of the following:

- (a) the equivalent base area value A₀; (8)
- (b) the longitudinal position of the centre of buoyancy from midships; (4)
- (c) the vertical position of the centre of buoyancy above the base. (4)

A ship of 31500 tonne displacement floating in sea water has 900 tonne of bunker fuel of 2. density 800 kg/m3 in double bottom tanks which are pressed up full.

In this condition the metacentric height is 0.25 m and the ordinates of the statical stability curve corresponding to this displacement are given in Table Q2:

Angle of heel (degrees)	0	5	10	15	20
GZ (metres)	0	0.017	0.055	0.095	0.137

Table Q2

The oil is transferred to a deep tank 5 m long by 20 m wide, situated on the ship's centreline.

The centre of gravity of the fuel after transfer is 7 m above the original centre of gravity of the oil and there is a free surface.

Determine EACH of the following for the new condition:

(a) the final effective metacentric height;

(b) the angle that the ship heels to;

(7)

(5)

(c) the dynamical stability at 20° angle of heel.

- (4)
- (a) The following particulars apply to a ship of length 140 m when floating in sea water of density 1025 kg/m³ at an even keel draught of 7.265 m.

displacement

15800 tonne

centre of gravity above the keel (KG) centre of buoyancy above the keel (KB)

7.8 m

 $= 4.05 \, \mathrm{m}$ $= 2146 \text{ m}^2$

waterplane area

= 3.0 m aft

centre of flotation from midships (LCF)

second moment of area of the waterplane

about a transverse axis through midships = 2.305 × 106 m⁴

(4)

Calculate the moment to change trim by one centimetre (MCT 1 cm).

- (b) The ship in the above condition now undergoes the following changes in loading:
 - 352 tonne added at an lcg of 10.5 m forward of midships;
 - 110 tonne removed from an lcg of 2.0 m aft of midships;
 - 150 tonne moved 52.7 m aft of its original position.

Calculate EACH of the following for the new condition:

the new end draughts of the ship;

(9)

(3)

(ii) the longitudinal position at which a mass of 204 tonne should be added to restore the ship to an even keel draught.

4.	A v	vessel of constant rectangular section 80 m long and 12 m wide has a KG of 4.77 m d floats on an even keel draught of 5.5 m in water of density 1025 kg/m³.	
	Th	e vessel is fitted with a transverse watertight bulkhead 10 m from the forward end.	
	The 60%	e compartment forward of the transverse bulkhead, which has a permeability of , is now damaged and laid open to the sea.	
	Cal	culate the new end draughts of the vessel.	(16)
5.	ı A	ectangular oil barge of light displacement 300 tonne is 60 m long and 10 m wide.	
	Th ler	e barge is divided by FOUR transverse bulkheads into FIVE compartments of equal agth.	
	CO	nen compartments 2 and 4 contain equal quantities of oil and the other mpartments are empty, the barge floats at a draught of 3 m in fresh water of density 00kg/m^3 .	
	(a)	Draw EACH of the following curves on a base of barge length:	
		(i) curve of loads;	(4)
		(ii) curve of shearing forces;	(4)
		(iii) curve of bending moments.	(5)
	(b)	State the magnitude and position of the maximum bending moment.	(3)
6.	(a)	Explain how a force normal to the rudder is produced when the rudder is turned to a helm angle.	(3)
	(b)	Define the term centre of effort as applied to a rudder.	(1)
	(c)	Describe how the position of the centre of effort changes as helm angle increases.	(2)
	(b)	Explain the term balanced, describing the benefits of fitting a balanced rudder.	(3)
	(e)	Describe, with the aid of a sketch, how an angle of heel is produced due to the force on the rudder.	(7)

7	A ship of length 140 m and breadth 18 m floats at a draught of 8 m in sea water of
,	density 1025 kg/m ³ . In this condition the block coefficient (C _b) is 0.68.

At a speed of 15 knots the following data applies:

Delivered power = 4720 kW Quasi-propulsive coefficient (QPC) = 0.70 Ship correlation factor (SCF) = 1.18

Calculate the pull required to tow a similar model of length 5 m at the corresponding speed in fresh water density 1000 kg/m³. (16)

Note: The frictional coefficient to be used:

for the model in fresh water of density 1000 kg/m³ is 1.694 for the ship in sea water of density 1025 kg/m³ is 1.415

Speed in m/s with the speed index (n) for ship and model 1.825 Wetted surface area (S) = $2.57 \sqrt{\Delta L}$ (m²)

8. A ship 160 m in length and 24 m breadth, displaces 24800 tonne when floating at a draught of 9 m in sea water of density 1025 kg/m³.

The ship's propeller has a diameter of 5.8 m, a pitch ratio of 0.9 and a blade area ratio of 0.45.

With the propeller operating at 1.9 revs/sec, the following results were recorded:

apparent slip ratio = 0.06 thrust power = 3800 kW propeller efficiency = 64%

Calculate EACH of the following for the above condition:

- (a) the ship's speed;
- (b) the real slip ratio; (6)
- (c) the thrust per unit area of propeller blade surface; (4)
- (d) the torque delivered to the propeller. (3)

Note: The Taylor wake fraction w_t is given by: $w_t = 0.5 C_b - 0.05$

9. An end bulkhead of an upper hopper tank is shown in Fig.Q9.

The hopper tank is tested by filling with fresh water of density 1000 kg/m^3 through a filling pipe to a head of 2.5 m above the upper deck.

Calculate EACH of the following:

(a) The load on the bulkhead; (8)

(b) The distance to the centre of pressure from the upper deck. (8)