CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

4

STCW 78 as amended MANAGEMENT ENGINEER REG. III/2 (UNLIMITED)

040-31 - APPLIED MECHANICS

TUESDAY, 18 JULY 2023

1315 - 1615 hrs

Materials to be supplied by centre

Candidate's examination workbook Graph paper

Examination paper inserts

Notes for the guidance of candidates:

- 1. Examinations administered by the SQA on behalf of the Maritime & Coastguard Agency.
- 2. Candidates should note that 96 marks are allocated to this paper. To pass, candidates must achieve 48 marks.
- 3. Non-programmable calculators may be used.
- 4. All formulae used must be stated and the method of working and all intermediate steps must be made clear in the answer.

APPLIED MECHANICS

Attempt SIX questions only

All questions carry equal marks

Marks for each part question are shown in brackets

 A simply supported beam carries a load which uniformly varies from 0 kN/m at the left hand edge to 15 kN/m at the right hand edge as shown in Fig Q1.

Fig Q1

Calculate the magnitude and position of the maximum bending moment.

(16)

2. A 20 kg stepped pulley system supports TWO masses on separate cables as shown in Fig Q2. The outer pulley has a 0.8 m diameter, the inner pulley a 0.6 m diameter, the radius of gyration is 0.65 m and frictional torque at the pulley bearings is a constant 0.8 Nm. Mass A is 30 kg and is at rest on horizontal ground when the system is released. Mass B is 45 kg and drops vertically from a height of 1 m.

Fig Q2

Calculate the velocity of mass B at the instant it makes contact with the horizontal. (16)

[OVER

3. The drive shaft of an engine rotates at a constant speed of 300 rpm. The stroke of the engine is 1040 mm and the length of the connecting rod is 1700 mm.

When the crank is 45° past top dead centre the instantaneous torque transmitted is 68 kNm.

Determine EACH of the following:

(a) the reaction force at the guide face; (10)

(6)

)

)

- (b) the relative velocity between crank and connecting rod.
- 4. In a set of sheer legs both front legs are 10 m long and are fixed 12 m apart on a horizontal base. The back stay of the system is 15 m long and is fixed on the same base at 10 m measured linearly from the centre of the front legs shown in Fig Q4. The mass suspended by the system is 15.29 tonnes.

Fig Q4

Determine EACH of the following:

(a)	the magnitude and nature of the force in the back stay;	(10)

(b) the magnitude and nature of the force in each of the front legs. (6)

5. A 2.8 m long rectangular box section cantilever beam is fabricated using 14 mm thick steel plate so that the cross-section has a maximum width of 100 mm and a maximum depth of 150 mm. The beam supports a concentrated load of 2400 N at its free end and a uniformly distributed load of 360 N/m over its entire length. Using the deflection relationships:

$$\delta = \frac{WL^3}{3EI}$$
 and $\delta = \frac{\omega L^4}{8EI}$

where: δ = beam deflection W = concentrated load ω = concentrated load

Calculate EACH of the following:

- (a) the minimum total deflection of the beam at its free end; (8)
- (b) the maximum bending stress induced at the wall support.

Note: Modulus of Elasticity for steel = $206 \text{ GN}/\text{m}^2$

6. An engine room lift-cage has a mass of 1 tonne. The hoist wire is wound around a motor driven drum, with the cage on one end and a balance mass of 0.8 tonne suspended from the other end. The 700 mm diameter drum has a mass of 250 kg and a radius of gyration of 450 mm. The maximum tension in the hoist wire during operation cannot exceed 12 kN.

Calculate EACH of the following:

- (a) the driving torque required at the drum for this acceleration; T_D (12)
- (b) the minimum output power of the motor when raising the lift-cage at a constant velocity of 3 m/s.
- (4)

(8)

7. A 125 mm diameter solid steel bar 100 mm in length supports a 275 kN compressive axial load. The line of action for the axial load is offset by 12 mm from the centre of the bar.

Calculate EACH of the following:

- (a) the maximum stress within the bar; (10)
- (b) the percentage change in length of the bar induced by tensile stress. (6)

Note: Modulus of Elasticity for steel = 207 GN/m^2

8. In a tensile test experiment a single core cable with a 5 mm diameter central steel wire encased by 6 alloy wires that are each 2.5 mm in diameter is found to extend 0.85 mm per metre when subjected to a load of 10 kN.

During a lifting operation the mounting supporting a mass this cable is attached to collapses and the mass freely falls a vertical distance of 30 mm causing an instantaneous extension of 2.8 mm in a 4 m length of cable.

Calculate EACH of the following:

- (a) the equivalent Modulus of Elasticity for the single core cable; (6)
- (b) the magnitude of the falling mass.
- 9. A flat plate clutch with 100 mm internal diameter and 225 mm external diameter is fully engaged with an axial pressure of 125 kN/m². The coefficient of friction between the contact surfaces is 0.41 and the transmission efficiency is 85%. The cylindrical alloy motor shaft has an internal diameter of 70 mm and a wall thickness of 5 mm.

Calculate the shearing stress within the motor shaft during operation.

(16)

(10)