W C

UK MARINE TRAINING CENTRE (UMTC)

SAI POOJA BUILDING, SHOP NO. 4, PLOT NO. 36, SECTOR – 34. KAMOTHE, NAVI MUMBAI – 410 209 MAHARASHTRA, INDIA.

EMAIL: umtcindia1234@gmail.com | PH: +91 9673855053, +91 7021406134

March 2018

Attempt TEN	questions on	ly as follows
-------------	--------------	---------------

SIX questions from each section A

TWO questions from section B
TWO questions from section C

2013/Dec 2016/APR

Marks for each part question are shown in brackets.

SECTION A

Q1. With reference to machinery parts under cyclic loading, describe, with the aid of sketches, see how the propagation of even the smallest of cracks can lead to total component failure. (10)

	2013/OCT	2016/July	2018/March				
Q	2. (a) Explai	in EACH	of the followi	ng control ter	rms:[sep]		
(i) cascade; (2	2) [<u>FEP]</u>					
(i	i) split range	e. (2)					
•	/		aid of a sketch ade control. (6		stem that may	y be enhance	d by

Q3With reference to main propulsion shaft systems:

2018/March

- (a) describe a method of hydraulic jacking to check bearing loads; (5) [SEP]
- (b) sketch the Bearing Load versus Shaft Lift Dial Gauge Reading graph obtained by the the serimethod described in part (a), annotating the graph and how the characteristic bearing load is obtained. (5)

2014/Oct	2018/Mar			

SAI POOJA BUILDING, SHOP NO. 4, PLOT NO. 36, SECTOR – 34. KAMOTHE, NAVI MUMBAI – 410 209 MAHARASHTRA, INDIA.

EMAIL: umtcindia1234@gmail.com | PH: +91 9673855053, +91 7021406134

Q4 (a) State the affinity laws for a centrifugal pump

- (b) State the effects on the pump affinity laws of fitting a slightly smaller diameter impeller. (2)
- (c) Explain, with the aid of a Head versus Flow diagram, why a two speed pump is preferable to throttling where high and low capacities are demanded for a large sea water circulating pump. (5)

2013/july	2014/Oct	2018/Mar				

Q5 (a) State the regulations pertaining to the main and auxiliary steering gear with reference to EACH of the following:

- (i) rudder angle and time of operation; (2)
- (ii) electrical supply. (3)
- (b) With reference to a hydraulic steering gear, explain EACH of the following:
- (i) the factors that may contribute to the failure of a hydraulic pipe coupling; (2) [SEP]
- (ii) what is meant by the single failure concept. (3) [SEP]

2017/Dec/Q5 2018/Oct 2018/March

- Q6. (a) Sketch a diagrammatic arrangement of a fully automatic direct expansion domestic refrigeration system. (5)
- (b) State, with reasons, FIVE desirable thermodynamic properties of a refrigerant. (5)

2016/July	2017/March 2018/March	h	

- Q7. With reference to automatic sprinkler systems for fire fighting purposes:
- (a) explain, with the aid of a Heat Release versus Time diagram, the difference between [I] fire control and fire suppression; (6) [I]

SAI POOJA BUILDING, SHOP NO. 4, PLOT NO. 36, SECTOR - 34. KAMOTHE, NAVI MUMBAI - 410 209 MAHARASHTRA, INDIA.

EMAIL: umtcindia1234@gmail.com | PH: +91 9673855053, +91 7021406134

(b) state the	limitations of	of using gla	ss bulbs to a	ctivate sprink	ler heads and	d	
suggest, with	h see reasons,	an alternati	ive mechanis	m. (4) [1]			
2013/July	2017/March 2	018/March					
which was s	hort of what	was stipula	ited in the pro	ered that the velocity documents	cument.		
\							
2018/MAR,	/Q8			A			
		<u>S</u> 1	ECTION - B	30			
Q9. (a) Expl		necessary 1	to provide re	verse power f	or a.c genera	ators operation	ng
(b) Describe	e, with the aid	d of a sketc	h, a reverse p	ower relay tr	ip. (8)		
2015/Mar	ch 2018/July	2018/March]
	be, with the .c. induction			ronic soft star	ting system	that may be	used
2014/Apri	l 2016/Dec	2018/March					
precautions (7)	that must b	e taken wit	th regard to p	nergency purpersonnel safe	ty, storage a		nce.
2010/ Mar							_

SAI POOJA BUILDING, SHOP NO. 4, PLOT NO. 36, SECTOR - 34. KAMOTHE, NAVI MUMBAI - 410 209 MAHARASHTRA, INDIA.

EMAIL: umtcindia1234@gmail.com | PH: +91 9673855053, +91 7021406134

SECTION - C

		•	stems, explain t and disadvantag		of operation of EA	СН
(a) bilge keel	ls; (5) [SEP]					
(b) passive u	ncontrolled tar	nks. (5) [SEP]			$\mathcal{M}_{\mathcal{I}}$	
2014/July	2015/Dec	2016/July	2018/March			
-		-			ntainer ship, how the cargo holds.	(10)
2013/Dec	2016/Dec 20	18/March				
Chiefsee Engir tosee work cor (b) Describe l	neer Officer, w mmencing. (5)	hat informat	_	iven to the doc	k explain, as cking company pri	
2015/0ct	2018/March					
			1	1		

SAI POOJA BUILDING, SHOP NO. 4, PLOT NO. 36, SECTOR – 34. KAMOTHE, NAVI MUMBAI – 410 209 MAHARASHTRA, INDIA.

EMAIL: umtcindia1234@gmail.com | PH: +91 9673855053, +91 7021406134

July 2018

Attempt TEN questions only as follows

SIX questions from each section A

TWO questions from section B

TWO questions from section C

Marks for each part question are shown in brackets.

SECTION A

- Q1. (a) State the factors in the storage of Manual Arc Welding electrodes which will assist in producing good quality welds. (2)
- (b) Explain the importance of edge preparation before welding. (2)
- © Sketch Two methods of Plate Edge Preparation. (2)

A hairline crack is detected in a pipe, as Chief Engineer Officer, state the factors to be taken into account in reaching a decision on the method of repair. (4)

2017/Mar	2018/Jul			

Q2. As Chief EngineerOfficer onboard a vessel which has lost 50 Litres of Lubricating Oil from the stern tube system to sea overnight, write a report to the Superintendent Engineer outlining the actions taken to rectify the leakage and any other further recommendations. (10)

2018/JUL/Q2			
-------------	--	--	--

- Q3. With reference to plate heat exchangers, explain how Each of the following design aspects promote heat transfer:
 - a) Material selection. (5)
 - b) Flow pattern. (3)
 - c) Extended surface area. (2)

	1			
2013/March	2017/Oct	2018/July		

M + C

UK MARINE TRAINING CENTRE (UMTC)

SAI POOJA BUILDING, SHOP NO. 4, PLOT NO. 36, SECTOR – 34. KAMOTHE, NAVI MUMBAI – 410 209 MAHARASHTRA, INDIA.

EMAIL: umtcindia1234@gmail.com | PH: +91 9673855053, +91 7021406134

Q4. State the inspections, instructions and maintenance that sh	ould be carried out
on main sea water pipelines, strainers and ship's side valves to	minimise the risk of
engine room flooding. (10)	

2013/Dec	2016/Apr	2018/July					
Q5. (a) S	ketch the h	ydraulic circ	cuit for a ra	am type ste	ering gear	that com	plies
with the	single failu	re concept a	and automa	atic isolatio	on. (6)		
(b) Desc	ribe how au	itomatic iso	lation, for 1	he hydrau	lic circuit	sketched	in
part(a),	is achieved	within 45 s	econds sho	uld leakag	e of systen	n oil occu	r. (4)
2014/JUL	Y 2015/Dec	2018/July					

Q6. With reference to refrigeration systems:

- a) Explain why undercooling of the refrigerant at the condenser outlet is desirable.(3)
- b) Describe, with the aid of a sketch, how a heat exchanger could be incorporated in the circuit to enhance undercooling. (5)
- c) Explain the possible consequences of the refrigerant having a dryness fraction at the compressor suction. (2)

2014/Apr 2014/July	2016/0ct	2018/Jul	

Q7. With nrefernce to air recievers:

- a) Explain why air receivers are prone to corrosion. (3)
- b) State how corrosion can be prevented. (3)
- c) If significant corrosion is detected during regular inspection explain how the air receiver may still be safely used in service until permanent repair can be effected. (4)

2018/JULY			

Q8. As Chief Engineer Officer, write a report to the Superintendent Engineer naming the items and describing the examinations that were carried out during a safety equipment survey with regards to fire safety. (10)

14 April 2018/July SHOP NO. 4, PLOT NO. 36, SECTOR - 34. KAMOTHE, NAVI MUMBAI - 410 209 MAHARASHTRA, INDIA.

EMAIL: umtcindia1234@gmail.com | PH: +91 9673855053, +91 7021406134

CECTION

		<u> SLC I</u>	ION – B			
Q9. (a) Expla generators	-			de reverse po	ower protec	tion for a.c.
(b) Sketch a g	generator pro	tection	circuit. (5)			' >
(c) Explain ho	ow to check t	he opera	ation of the	reverse powe	r trip. (3)	7
2013/Dec 2	2018/July					
	e, with the aid /R) which em 2018/JULY		_	the operation, the operation	on of an auto	matic voltage
stating why (b) Describ (i) Resist	y the test is be how each tance (2) nuity (2)	carried	out on re	on of an insugular basis.	(6)	·
			CECTIO	N C		

Q12. With reference to the structure of a large passenger ship, describe the requirement for preventing the spread of fire and smoke. (10)

2019/Mar	2018/Jul					
Q13. With	reference to	large bulk c	arriers:			
(a) sketch	a cross secti	on of a bull	k carrier thre	ough the mid-	-ship; (5)	
(b) explain	the design fe	atures that	have evolved	l to minimise t	he possibility	of failure. (5)
2013/MA	2019/JUL/					
R	13					

Q14. (a) Explain the cause and effects of panting and pounding, indicating the affected areas. (5)

October 2019

Attempt TEN questions only as follows

SIX questions from each section A

TWO questions from section B

TWO questions from section C

Marks for each part question are shown in brackets.

		<u>St</u>	<u>-CHON</u>	<u>A</u>		7		
Q1. With re	ference to	steels use	d in shipbu	ilding and	marine	engineeri	ng:	
(a) describe	EACH of	f the follow	ing types o	of failure;				
(i) brittle fai	ilure; (2)							
(ii) ductile f	ailure. (2))		O				
(b) Explain brittle transi		ductile to b	rittle transi	tion stating	g the fa	ctor that de	etermines d	uctile to
(c) Describe	e a test to	determine	the value of	f brittle fra	icture o	f a specim	en test piec	e. (4)
2018/OCT/Q	1							
Q2. (a) Des combustib			l of a sket	ch, an ex	plosim	neter for t	he detecti	on of
(b) Descri	ibe how	the instru	ment sket	ched in p	art (a)	is tested	and caliba	rated. (4)
2018/OCT/Q2								
Q 3. With re		1 1			- 7			
(a) state the	objective	es of a sails	maciory all	gmmem, <u>'se</u> i	<u>P</u> .			

(b) state the conditions that must be met to achieve satisfactory alignment;

plain what is meant by fair curve alignment. SAI POOJA BUILDING, SHOP NO. 4, PLOT NO. 36, SECTOR - 34. KAMOTHE, NAVI

EMAIL: umtcindia1234@gmail.com | PH: +91 9673855053, +91 7021406134

Q4. Describe	EACH of the	following heat	exchanger	types,	stating a	suitable	application	n for
EACH type:								

- 1.(a) parallel flow; [SEP](3)
- 2.(b) contra flow; [SEP](3)
- 3.(c) mixed flow. [SEP](4)

2015/DEC	2018/OCT			

Q5. With reference to centrifugal pumps:

- a) State the operating principle of a centrifugal pump and why it is unnecessary to fit a relief valve to it. (2)
- b) State two impeller types, explaining which type of application Each would be best suited for. (4)
- c) Explain why cavitation occurs and how it is reduced by design. (4)

				-
2015/March	2016/March 2017/Dec	2018/Oct		

Q6. With reference to a hydraulic steering gear, explain EACH of the following:

- a) The factors that may contribute to the failure of a hydraulic pipe coupling. (2)
- b) Why it is of the utmost importance that in the event of a hydraulic system failure that the rudder is locked and isolated of the affected area is achieved as soon as possible. (2)
- c) The problems that may occurs when locking the rudder in heavy weather. (2)
- d) Why hydraulic locking is preferable to mechanical means. (2)
- e) What is meant by the single failure concept. (2)

		, ,	1 ()	
2017/DEC	2018/OCT	2018/March		

Q7. As Chief Engineer Officer, prepare standing orders for working with gas cutting and gas welding equipment, including the storage of spare bottles. (10)

2015/DEC 2018/OCT

M T C

UK MARINE TRAINING CENTRE (UMTC)

SAI POOJA BUILDING, SHOP NO. 4, PLOT NO. 36, SECTOR – 34. KAMOTHE, NAVI MUMBAI – 410 209 MAHARASHTRA, INDIA.

EMAIL: umtcindia1234@gmail.com | PH: +91 9673855053, +91 7021406134

Q8. With reference	Q8.	With	refere	nce
--------------------	-----	------	--------	-----

- (a) Sketch such a system. (6)
- (b) State how the system in (a) is activated. (2)
- (c) State, with a reason, a suitable location for the above system. (2)

SECTION - B

Q9. Describe with the aid of a diagram, a shaft generator that uses a frequency converter. (10)

2013/OCT 2016/OCT 2018/OCT

- Q10. (a) Sketch a circuit diagram of an emergency generator power supply and distribution system, indicating the essential services provided. (6)
- (b) State the emergency generator regulations. (4)

2018/OCT						
----------	--	--	--	--	--	--

- Q11. With reference to lithium –ion batteries:
 - a) Explain why this type of battery has been adopted for shipboard use. (4)
 - b) State ONE advantage and ONE disadvantage of lithium-ion batteries. (2)
 - c) Define each of the following:
 - i. Cell drift. (2)
 - ii. Thermal runaway. (2)

2018/OCT			

SECTION -C

- Q12. (a) Describe the stresses that the hull of an ocean-going vessel is subjected to when it encounters heavy weather. (5)
- (b) Explain why the bilge keels do not extend the full length of the vessel.(3)

OCTS 2012 0 MAr EN 12012 77,00 TO 1870 CTPLOT NO. 36, SECTOR - 34. KAMOTHE, NAVI

EMAIL: umtcindia1234@gmail.com | PH: +91 9673855053, +91 7021406134

Q13. (a) With reference to bilge keels:

- i. Describe how the design and method of attachement reduces the possibility of damage to the shell plate. (5)
- ii. State what tests must be carried out. (2)
- iii. Explain why the bilge keels do not extend the full length of the vessel. (3)

2014/OCT	2017/MAR 2017/OCT	2018/OCT			

Q14. With reference to tank inspection:

- a) List six items that should be looked for in a tank inspection. (3)
- b) State where erosion would be found in Ballast Tank. (2)
- c) Write procedure for Enclosed Space Entry. (5)

2018/OCT						
----------	--	--	--	--	--	--

MTC

UK MARINE TRAINING CENTRE (UMTC)

SAI POOJA BUILDING, SHOP NO. 4, PLOT NO. 36, SECTOR – 34. KAMOTHE, NAVI MUMBAI – 410 209 MAHARASHTRA, INDIA.

EMAIL: umtcindia1234@gmail.com | PH: +91 9673855053, +91 7021406134

December 2019

Attempt TEN	questions	only as	follows
--------------------	-----------	---------	---------

SIX questions from each section A

TWO questions from section B

TWO questions from section C

Marks for each part question are shown in brackets.

- Q1. Explain the effects of the addition of EACH of the following alloying elements to improve the characteristics of steels:
- (a) chromium; (2) [SEP]
- (b) manganese; (2) [SEP]
- (c) molybdenum; (2) [SEP]
- (d) nickel; (2) [SEP]
- (e) vanadium. (2)

2018/DEC		

- Q2. (a) Describe, with the aid of a sketch, a temperature measuring instrument that uses the principle of operation of a change in resistance with the application of heat. (6)
- (b) Describe how the instrument sketched in part (a) is tested and calibrated. (4)

2018/DEC			

- Q3. (a) Explain how power is transmitted through main propulsion shafting. (3)
- (b) State THREE operational factors that may induce high stress in shaft coupling bolts. (3)
- (c) Sketch a hydraulic type of shaft coupling bolt. (4)

MUMBAI - 410 209 MAHARASHTRA, INDIA.

EMAIL: umtcindia1234@gmail.com | PH: +91 9673855053, +91 7021406134

\sim	TT7'.1	C		. 1	1		
()/	W/ 1fh	reference	tΩ	microh	acterial	1nte	ctation
Qт.	4 4 1 CII	TCTCTCTCC	w	IIIICIOO	acteriar	11110	station.

- (a) list the engine room systems that may be affected by this type of contamination; (2)
- (b) describe the conditions required for bacteria to evolve; (6) [SEP]
- (c) describe how the presence of microbial contamination could be detected. (2) [SEP]

2014/July	2015/July	2015/OCT	2018/DEC			

- Q5. With reference to activated fin stabilisers, explain EACH of the following:
- (a) why such units are preferred to passive tanks in large vessels; [SEP](3)
- (b) why these units are preferred for passenger and fast cargo ships; (3) [SEP]
- (c) why partial, rather than maximum damping of ship movement in heavy weather, is advisable for reasons other than overstressing the fin stocks and activating gear. (4)

2014/DEC 2018/DEC/Q5					
----------------------	--	--	--	--	--

- Q6. With reference to a vapour compression refrigeration plant:
- (a) explain the purpose of EACH of the following:
- (i) expansion valve; (2) [SEP]
- (ii) room thermostat; (2) [SEP]
- (iii) high pressure cut out. (2) [SEP]
- (b) explain why EACH of the following conditions are desirable:
- (i) superheating at the compressor suction; (2) [SEP]
- (ii) undercooling at the condenser outlet. (2) [SEP]

2018/DEC				

SAI POOJA BUILDING, SHOP NO. 4, PLOT NO. 36, SECTOR – 34. KAMOTHE, NAVI MUMBAI – 410 209 MAHARASHTRA, INDIA.

EMAIL: umtcindia1234@gmail.com | PH: +91 9673855053, +91 7021406134

Q7. (a) Sketch a line diagram showing the layout and components of a hydronic state of the layout and components of a hydronic state of the layout and components of a hydronic state of the layout and components of a hydronic state of the layout and components of the layout and	draulic system
with variable delivery, pressure compensated pump and accumulator,	suitable for
the sep operation of deck machinery. (5)	

(b) Desc	cribe the o	peration of	the system	sketched in	part ((a).	(5)
----------	-------------	-------------	------------	-------------	--------	------	-----

	T					
2017/OCT	2018/Dec					

Q8. As Chief Engineer Officer, describe the examinations that were carried out during a safety equipment survey with regard to fire safety. (10)

2018/DEC/Q8		

SECTION - B

- Q9. With reference to the paralleling of a.c. generators:
- (a) outline the requirements of synchronisation; (2) [SEP]
- (b) explain how KW power is shared; (1) [SEP]
- (c) explain how KVAR power is shared; (1) [SEP]
- (d) state SIX types of damage that may be caused when machines are incorrectly synchronised. (6)

2015/DEC	2018/Dec			

- Q10. During a complete loss of electrical power, essential vital services can be maintained by means of an Uninterruptable Power Supply (UPS).
- (a) Describe, with the aid of a block diagram, the operation of an a.c. input UPS arrangement. (7)
- (b) List SIX essential services that the UPS or emergency batteries may support. (3) [SEP]

March 2018/DEC/010 SAI POOJA BUILDING, SHOP NO. 4, PLOT NO. 36, SECTOR – 34. KAMOTHE, NAVI MUMBAI – 410 209 MAHARASHTRA, INDIA.

EMAIL: umtcindia1234@gmail.com | PH: +91 9673855053, +91 7021406134

Q11.	(a)	With refere	ence to an	alkaline	battery	cell:
------	-----	-------------	------------	----------	---------	-------

- (i) describe a typical cell, stating the materials used; (4) [SEP]
- (ii) describe the process that takes place during discharge and charge; (2) [SEP]
- (iii) state the effects of overcharge. (2) [SEP]
- (b) State the advantages of an alkaline cell compared with a lead acid cell. (2)

2013/DEC 2018/DEC			

SECTION -C

Q12. When a vessel is in dry dock, the possible risks of fire in the machinery spaces are heightened due to the nature of the work being carried out. SEP As Chief Engineer Officer, compile a set of standing orders instructing ship's staff on the sep actions to be taken should a serious fire occur. (10)

2014/July	2018/Dec				

- Q13. With reference to double hulled oil tankers:
 - (a) sketch a mid ship cross section; (5) [SEP]
 - (b) state the reason this type of design; (1) [SEP]
 - (c) state FOUR disadvantages of this type of design. (4) [SEP]

2013/OCT	2018/Dec			

- Q14. During sea trials, extensive noise measurements are taken in accordance with the *Code of Practice for Noise Levels in Ships*.
 - (a) State and explain the unit of sound measurement. (2) [SEP]

(b) State the noise level above which personne are required to wear ear protection. (1) BAI - 410 209 MAHARASHTRA, INDIA.

EMAIL: umtcindia1234@gmail.com | PH: +91 9673855053, +91 7021406134

- (c) Explain how a ship's crew may be made aware of the hazards posed by exposure to excessive noise. (2) [SEP]
- (d) Explain how the noise levels can be reduced in the design of EACH of the following:
 - (i) diesel generators; (3) [SEP]
 - (ii) ventilation fans and trunkings. (2) [sep]

2015/DEC 2106/Apr	2018/Dec			

SAI POOJA BUILDING, SHOP NO. 4, PLOT NO. 36, SECTOR - 34. KAMOTHE, NAVI MUMBAI - 410 209 MAHARASHTRA, INDIA.

EMAIL: umtcindia1234@gmail.com | PH: +91 9673855053, +91 7021406134

