Mathematics December 2018

mathematics

Attempt SIX questions only
All questions carry equal marks
Marks for each part question are shown in brackets
determine EACH of the following:
(a) Z in Cartesian form;
(b) Q , in polar form, given $\mathrm{Q}=\frac{E^{2}}{Z}$ when $E=15 \angle 120^{\circ}$.
(a) Solve the following system of equations for x and y :

$$
\begin{align*}
& \frac{5}{x}-\frac{3}{y}=\frac{13}{8} \\
& \frac{3}{x}-\frac{5}{y}=\frac{49}{24} \tag{10}
\end{align*}
$$

(b) Solve the following equation for x :

$$
\begin{equation*}
(2 x-3)(4 x+5)=-9 \tag{6}
\end{equation*}
$$

(a) Express the following function of x as a single algebraic fraction in its simplest form:

$$
\begin{equation*}
\frac{2}{x}+\frac{1}{x+1}-\frac{3}{x-1}+\frac{2}{x(x+1)(x-1)} \tag{7}
\end{equation*}
$$

(b) Factorise fully EACH of the following:
(i) $a^{3}-a b^{4}$
(ii) $12 x^{3}+x^{2}-6 x$
(iii) $12 \mathrm{p}^{2}+36 \mathrm{pq}+27 \mathrm{q}^{2}$
4. (a) Solve for x in the following equation:

$$
\begin{equation*}
32^{3 x}=8^{2 x+6} \tag{6}
\end{equation*}
$$

(b) Express the following in its simplest form:

$$
\begin{equation*}
\left(\frac{a^{\frac{5}{2}}}{b^{\frac{5}{3}}}\right)^{\frac{1}{5}} \times\left(\frac{b^{2}}{a^{\frac{3}{2}}}\right)^{\frac{1}{3}} \tag{6}
\end{equation*}
$$

(c) Transpose the following formula to make t the subject:

$$
\begin{equation*}
i=I e^{-\frac{t}{C R}} \tag{4}
\end{equation*}
$$

5. Table Q5 shows corresponding measurements of the diameter $(d \mathrm{~cm})$ and the breaking load $(m \mathrm{~kg})$ of a particular type of rope.
(a) Draw a straight line graph to verify that the diameter and breaking load are related by a law of the form $m=k d^{m}$ where k and n are constants.

d	2	3	4	5	6
m	80	179	320	501	720

Table Q5
Suggested scales: horizontal axis $2 \mathrm{~cm}=0.1$
vertical axis $2 \mathrm{~cm}=0.1$
(b) Use the graph drawn in Q5(a) to estimate the value of k and n.

At 0800 hours a patrol boat is set on a course to intercept a vessel as soon as possible.
The vessel is 30 nautical miles due east of the patrol boat and is sailing on a steady course of 030° at a speed of 15 knots.

The best speed of the patrol boat is 25 knots.

Calculate the earliest possible interception time, to the nearest minute.
(a) A company produces particular components in batch sizes which are in multiples of a hundred components.

The production cost, C, of x hundred components is given by:

$$
C=2 x^{3}-12 x^{2}-72 x+500
$$

Determine, using differential calculus, the batch size which minimises the cost of production.
(b) Determine the first and second derivatives of EACH of the following functions:
(i) $y=\frac{x^{5}}{5}+\frac{3}{x}$
(ii) $S=\cos t+\ln t$
(a) Determine the volume of solid of revolution when the shaded area shown in Fig Q8(a) is rotated through one complete revolution about the x axis.

Fig Q8(a)

$$
\int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}}
$$

(b) Evaluate $\int_{0}^{3}(\cos \theta-4 \sin \theta) d \theta$
9. (a) Determine EACH of the following, without using a calculator conversion function:
(i) the conversion of 1275 to to hexadecimal;
(ii) the hexadecimal operation EB4C - ASDF.
(b) The truth table for a logic system with inputs P, Q and R , and output X , is shown in Table Q9(b).

P	Q	R	X
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Table Q9(b)
Produce EACH of the following for the logic system:
(i) a Boolean expression in its simplest form;
(ii) the equivalent logic circuit with the minimum number of gates;
(iii) the equivalent logic circuit using only NAND gates, (crossing out any redundant gates).

