CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY – MARINE ENGINEER OFFICER

EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY

STCW 78 as amended MANAGEMENT ENGINEER REG. III/2 (UNLIMITED)

040-35 – MATHEMATICS

THURSDAY, 19 JULY 2018

1315 - 1615 hrs

Examination paper inserts:

Notes for the guidance of candidates:

- 1. Non-programmable calculators may be used.
- 2. All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer.

Materials to be supplied by examination centres:

Candidate's examination workbook

MATHEMATICS

Attempt SIX questions only

All questions carry equal marks

Marks for each part question are shown in brackets

1. (a) Given z = x + jy, where x and y are real, solve the following equation for x and y.

$$\frac{z}{1-j} + \frac{z}{j} = \frac{20}{3-j}$$
(8)

(b) Given $z_1 = 5 \angle 20^\circ$, $z_2 = 4 \angle 30^\circ$ and $z_3 = 2 \angle 15^\circ$,

express
$$\frac{z_1 + z_2}{z_3}$$
 as a complex number in polar form. (8)

- (a) Calculate the mass of a metal containing 55% nickel which would be required to combine with 10 mg of pure nickel to form an alloy containing 85% nickel.
 (6)
 - (b) Solve EACH of the following equations for *x*:

(i)
$$\frac{3}{x+3} + \frac{2}{x-3} = \frac{5}{x-1}$$
 (6)

(ii) $x^2 - 13x + 40 = 0$ (4)

3. Solve for *x* in EACH of the following equations:

(a)
$$3^{1-x} = 2^{x+1}$$
 (8)

(b)
$$ln\left(\frac{3+x}{3-x}\right) = 1.25$$
 (8)

4. (a) Solve the following system of equations for a, b and c:

$$3a + b - 2c = 4$$

 $a - 2b + c = 6$
 $7a - 6b - c = 10$ (10)

(b) The sag, y metres, in a cable of length L metres stretched between two supports, x metres apart, as illustrated in Fig Q4(b), is given by the formula:

$$L = \frac{8y^2}{3x} + x$$

Calculate the distance *x* when *L* is 75 m and *y* is 2.4 m.

5. Variables P and V are thought to be related by a law of the form: $PV^n = C$ where n and C are constants.

Observations of P and V are recorded in Table Q5.

(a) Draw a straight line graph to verify this relationship.

(10)

(6)

Р	15	20	30	40	50
V	4.42	3.55	2.60	2.06	1.74

Table Q5

Suggested scales:	horizontal axis	2 cm = 0.1
	vertical axis	2 cm = 0.1

(b) Use the graph drawn in Q5(a) to estimate the values of n and C. (6)

6. In the diagram shown in Fig Q6, B and D represent the centres of two gear wheels.

An idler is to be placed at **C**.

Calculate the values of *x* and *y*.

7. (a) The rate R, in tonnes per hour, at which a particular vessel consumes fuel is given by:

 $R = 15 + 0.00048V^3$, where V is the speed of the vessel in knots.

Determine EACH of the following for this vessel when it embarks on a passage of 500 nautical miles:

- (i) the speed of the vessel which minimises the amount of fuel consumed; (10)
- (ii) the minimum amount of fuel consumed. (2)

(b) Determine
$$\frac{ds}{dt}$$
 given $s = \frac{2(t^2 - t)}{\sqrt{t}}$. (4)

[OVER

8. (a) The work done during an adiabatic expansion follows the law PV $^{n} = C$, where C and n are constants, as the volume increases from V₁ to V₂.

The work done can be represented by the shaded area in Fig Q8(a).

An amount of steam expands so as to satisfy the law $PV^{1.13} = C$.

Calculate the work done, in Joules, when the steam expands from a volume of 0.2 m^3 at a pressure of 850 kN/m² to a volume of 0.5 m³. (12)

9. (a) Determine EACH of the following, *without using a calculator conversion function*:

	(i) the binary operation 11011×1011 ;	
	(ii) the hexadecimal operation $BC7E - 9ADF$;	(1)
	(iii) the conversion of $DC4B_{16}$ to decimal;	(2)
	(iv) the conversion of 1110111111_2 to hexadecimal.	(1)
(b)	A logic circuit behaves according to the Boolean expression:	
	$X = \overline{A \oplus B + \overline{A.B}}$	
	(i) without simplification, draw the circuit diagram for the expression, using only	
	XOR, NAND and NOR gates;	(3)

- (ii) simplify the expression as fully as possible. (4)
- (c) Simplify the following Boolean expression as fully as possible:

$$(\overline{C} + D).(C + D).\overline{E}$$
 (3)