CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY – MARINE ENGINEER OFFICER

EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY

STCW 95 SECOND ENGINEER REG. III/2 (UNLIMITED)

042-23 - MATHEMATICS

THURSDAY, 16 DECEMBER 2010

1315 - 1615 hrs

Examination paper inserts:

Notes for the guidance of candidates:

- 1. Non-programmable calculators may be used.
- 2. All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer.

Materials to be supplied by examination centres:

Candidate's examination workbook Graph Paper

MATHEMATICS

Attempt SIX questions only

All questions carry equal marks

Marks for each part question are shown in brackets

1. (a) By applying Kirchoff's Laws in a circuit the following equations were obtained:

 $24(I_1 - I_2) + 48I_1 = 4.2$ $16I_2 - 4(I_1 - I_2) = 0.7$

Calculate the values of the currents I_1 and I_2 .

(b) Pump A can fill an empty tank in 1 hour 40 minutes. A second more powerful pump, B, can fill the same tank in 40 minutes.

Calculate the overall time to fill the empty tank if pump A runs alone for 30 minutes and then pump B is used to assist pump A. (8)

2. (a) Solve for *x* in the following equation:

$$\frac{2x+3}{4} = \frac{x-3}{5} + 2$$

(b) Make D the subject of the following formula:

$$T = \frac{12.5 \text{ D}}{\text{D} + 4\text{d}}$$

(c) The volumes of two solid spheres are in the ratio 2197 : 512.

Determine the ratio of their surface areas.

(8)

(6)

(6)

(4)

3. (a) The sag, *s* metres, in a wire of length L metres stretched between two supports *x* metres apart, as illustrated in Fig Q3(a), is given by the formula:

$$L = x + \frac{8s^2}{3x}$$

Calculate the distance *x* when L is 200 m and s is 8 m.

(b) Given:
$$R = \frac{(27y - 18x)(4x^2 + 12xy + 9y^2)}{(4x^2 - 9y^2)(10x + 15y)}$$

Express R as a fraction in its simplest form.

4. (a) Given:
$$n = 10 \log_{10} \left(\frac{P_2}{P_1} \right)$$

Calculate the value of P_1 when n = 2.5 and $P_2 = 2.8$ (4)

(b) Calculate the value of t such that
$$\ln\left(3 - \frac{2}{t}\right) = -0.2$$
 (6)

(c) Use laws of indices to fully simplify:

$$\sqrt[3]{\frac{125h^{\frac{5}{2}}}{27n^{\frac{7}{4}}} \times \frac{n^{\frac{13}{5}}}{h}}{h}}$$
(6)

(8)

(8)

- 5. Table Q5 indicates the deflection, *d* mm, of a beam under loads, *L* Newtons. The deflection is related to the load by the formula: $L = kd^n$ where *k* and *n* are constants.
 - (a) Draw a graph to verify this relationship.
 - (b) Determine approximate values of *k* and *n*.

d mm	7.58	10.8	14.5	18.6	23.0	27.7
L Newtons	20	25	30	35	40	45

Table Q5

Suggested scales: horizontal axis 2 cm = 0.1vertical axis 2 cm = 0.04

6. (a) A roller of diameter 25 mm is placed in a V block as shown in Fig Q6(a). The distance from the top of the roller to the top of the V block is 4.64 mm.

Calculate the width W of the block.

Fig Q6(a)

(b) Given:
$$H(t) = 6 - 5\sin\left[\left(\frac{\pi}{6}\right)t + \frac{\pi}{2}\right]$$

- (i) State the maximum value of H(t); (1)
- (ii) Calculate the first positive value of t when this occurs. (5)

(10)

7. (a) The temperature $T^{\circ}C$ at a certain location *t* hours after 9 a.m. is given by the function:

$$T = \frac{t^3}{3} - 3t^2 + 8t + 10$$

Calculate the time when the temperature starts to fall.

(b) Given: $S = 5 + 2\sin\theta + 3\cos\theta$

(i) Determine the value of
$$\frac{dS}{d\theta}$$
 when $\theta = \frac{2\pi}{3}$ radians (4)

(8)

(ii) Solve
$$\frac{dS}{d\theta} = 0$$
 for θ in the range $0 \le \theta \le \frac{\pi}{2}$ (4)

8. (a) The average value, \overline{y} , of a function y = f(x) in the range x = a to x = b is given by:

$$\overline{y} = \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$

Determine the average value of the function $y = 5x^4 - 4x$ in the range x = 0 to x = 2. (6)

(b) Fig Q8(b) shows a sketch of the function $y = 3x^2 - x^3$

Calculate the volume of the solid of revolution obtained when the shaded area is rotated once about the x axis. (10)

Fig Q8(b)

9. Fig Q9 shows three heavy spheres lying inside a hollow cylinder. The diameter of the cylinder is 250 mm. The diameters of EACH of the three spheres is 150 mm.

Calculate the volume of water, in cm³, to just cover the top sphere.

(16)

Fig Q9