CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY – MARINE ENGINEER OFFICER

EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY

STCW 95 SECOND ENGINEER REG. III/2 (UNLIMITED)

042-23 - MATHEMATICS

THURSDAY 15 DECEMBER 2011

1315 - 1615 hrs

Examination paper inserts:

Notes for the guidance of candidates:

- 1. Non-programmable calculators may be used.
- 2. All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer.

Materials to be supplied by examination centres:

Candidate's examination workbook Graph Paper

MATHEMATICS

Attempt SIX questions only

All questions carry equal marks

Marks for each part question are shown in brackets

(a) Ports A and B are 36 nautical miles apart. A tanker leaves port A at 1130 hours travelling towards port B at a steady 16 knots. It stops for 2 hours 30 minutes for loading and returns at a steady speed of 12 knots. A second vessel leaves port B at 1610 hours and reaches port A 40 minutes before the tanker.

Determine EACH of the following:

(i)	the time the tanker arrives back at port A;	(4)
(1)	the time the tanker arrives back at port A;	(4

- (ii) the speed of the second vessel. (4)
- (b) The amount of energy stored in flywheels of similar shapes is directly proportional to the squares of their speeds and to the fifth power of their diameters. One flywheel has a diameter 1.72 times that of a smaller one and it runs at 85% of the speed of the smaller. The smaller flywheel stores 9.2 kJ of energy.

Calculate the amount of energy stored in the larger flywheel. (the larger flywheel. (8)
---	--------------------------

- 2. (a) Solve for *a* in the following equation:
 - (b) The vapour pressure in a certain inflammable gas is given by the formula:

— where *A* and *B* are constants.

When *p* is 10.12, $T = 120^{\circ} K$. When *p* is 93.33, $T = 140^{\circ} K$.

Determine the values of *A* and *B* correct to 3 significant figures. (8)

(8)

3. (a)

		Express y as a single fraction in its simplest form.	(8)
	(b)	Determine the value of <i>x</i> , (for $x > 0$) which satisfies the following:	(8)
4.	(a)	Solve for <i>n</i> in the following equation:	(6)
	(b)	The time, t hours, to charge a certain battery to a level C (expressed as a decimal fraction of the battery's full charge) is given by :	
		Determine what percentage of the full charge would be achieved after charging the battery for 5 hours 15 minutes.	(6)
	(c)	_	
		Express R in terms of T , Q and s .	(4)
5.		coefficient of friction, μ , between a pulley and a belt and the speed of the pulley, is, are considered to be related according to where a and b are	

- constants.
- (a) Using the values of μ and v in Table Q5, draw a graph to confirm this relationship. (10)

(6)

(b) Using the graph drawn in Q5(a), determine the values of a and b.

μ	0.217	0.240	0.258	0.273	0.286
v m/s	2	4	6	8	10

Table Q5

Suggested scales:	horizontal axis	$2 \ cm = 0.2$
	vertical axis	$2 \ cm = 0.01$

6. In the diagram shown in Fig Q6, A and C represent the centres of two gear wheels.

An idler is to be placed at B.

Calculate the distances of *x* and *y*.

7. (a) The cost, $\pounds C$ per 100 metres, of laying a cable of cross-section $x \text{ cm}^2$ is found to correspond to the formula:

Calculate EACH of the following:

(i)	the cross-sectional area such that the cost is a minimum;	(6)

- (ii) the minimum cost per 100 metres to lay the cable. (2)
- (b) Determine the first differential coefficient of EACH of the following:
 - (i) (4)
 - (ii) (4)

(16)

8. (a) Determine the shaded area enclosed by y = - and as shown in (10) Fig Q8(a).

(b) Evaluate

(6)

(4)

9. The vertical height of a solid right circular cone is 50% greater than the diameter of its base. The <u>total</u> surface area of the cone is 500 cm².

Calculate EACH of the following:

(a) the diameter of t	he base of the cone;	(12)
-----------------------	----------------------	------

(b) the volume of the cone.