CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY -MARINE ENGINEER OFFICER

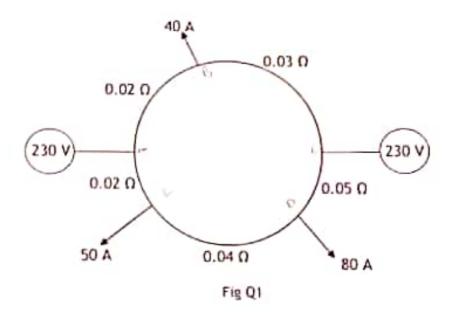
EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY

STCW 78 as amended MANAGEMENT ENGINEER REG. III/2 (UNLIMITED)

040-	11 - ELECTROTECHNOLOGY
THU	RSDAY, 28 MARCH 2019
0915	i - 1215 hrs
Exam	nination paper inserts:
Note	s for the guidance of candidates.
1	Non-programmable calculators may be used.
2.	All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer.
Mate	rials to be supplied by examination centres:
	ididate's examination workbook
Gra	ph paper

ELECTROTECHNOLOGY

Attempt SIX questions only.


All questions carry equal marks.

Marks for each part question are shown in brackets.

 Fig Q1 shows a d.c. ring main supplied by two 230 V generators. The cable section resistances are for go and return.

Calculate EACH of the following:

- (a) the current in each cable section; (8)
- (b) the power loss in each cable section; (5)
- (c) the p.d. at each load. (3)

2	 A relay coil has a resistance of 200 Ω and the current required to operate the relay is 150 mA. 						
	When the coil is connected to a 50 V d.c. supply it takes 40 ms for the relay to operate.						
	(a)	Calculate EACH of the following:	0.04365				
		(i) the steady state relay current;	6.0484	(2)			
		(ii) the time constant for the coil;		(4)			
		(iii) the inductance of the coil.		(4)			
	(b)	To increase the operating time for the relative series with the coil.	ay, a 50 Ω resistor is conn	ected in			
	Determine the new operating time for the relay.						
3.	(a)	re identical coils are star-connected acro er supply and consume a total power lagging. Determine the resistance and inductance of Calculate the current in each line if one co (i) short-circuited; (ii) open-circuited.	of 3 kW at a power to	TF (8) 1 7 7 7 - (4)			
4.	A three-phase electrical load of 800 kW is operating at a power factor of 0.7 lagging. It is desired to improve the supply power factor to 0.92 lagging by connecting a synchronous motor driving a load of 200 kW with an efficiency of 91%.						
	Deterr	mine EACH of the following:					
	(a) th	ne kVA of the synchronous motor;		(12)			
	(b) th	ne power factor of the synchronous motor.	•	(4)			

Two, three-phase, four-pole, generators operating in parallel supply a total load of 900 kW at a power factor of 0.75 lagging.

Their load characteristics are linear with the test results given in Table Q5.

Generator	Speed/kW	Voltage/kVAR
	1960 rev/min at no-load	475 V at no load
No. 1	1720 rev/min at 450 kW	430 V at 420 kVAR
	1850 rev/min at no-load	450 V at no-load
No. 2	1750 rev/min at 450 kW	435 V at 420 kVAR

Table Q5

Determine EACH of the following:

(c) the operating power factor of each generator.

- (a) the bus-bar frequency; (5)
 (b) the bus-bar voltage; (6)
- With reference to a single-phase a.c. power transformer with natural air cooling:
 - (a) sketch a labelled diagram of the basic construction; (4)
 - (b) describe the principle of operation; (4)
 - (c) explain why it is rated in kVA; (3)
 - (d) explain why it may overheat if supplied below its rated frequency; (3)
 - (e) state how operation at a reduced frequency may be compensated to avoid overheating. (2)

7.	(a)	State the function of an AVR.	(2)
	(b)	State FOUR conditions external to an alternator that cause its terminal voltage to drop.	1,000
	(c)	Sketch and label a typical AVR response curve, identifying the application of load, recovery time, maximum acceptable voltage dip, and the permissible steady-state voltage regulation.	(4)
	(d)	State the function of an AVR trimming potentiometer for EACH of the following cases:	11.75.1
		(I) when a generator operates in standalone mode;	(2)
		(ii) when a generator operates in parallel.	(2)
8.	Wit	h reference to shipboard electrical distribution systems:	
	(a)	describe the meaning of the term earth fault;	(2)
	(b)	explain the meaning of the term earth-bonding and why it is required;	(3)
	(c)	sketch a circuit diagram of one arrangement for detecting phase to earth faults in an earthed neutral system;	(6)
	(d)	calculate the value of a neutral earthing resistor (NER) to limit the earth fault current to the full load rating of a 2 MW, 0.8 p.f., 3.3 kV, three-phase generator.	(5)
			19)
9.	(a)	Sketch a labelled circuit diagram of a half-wave rectifier with a capacitor filter and resistive load.	(4)
	(b)	Describe the operation of the circuit sketched in Q9(a).	(8)
	(c)	Sketch the load voltage waveform for the circuit sketched in Q9(a), and identify the peak-peak ripple voltage.	(4)