CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY – MARINE ENGINEER OFFICER

EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY

STCW 95 CHIEF ENGINEER REG. III/2 (UNLIMITED)

041-33 - ELECTROTECHNOLOGY
THURSDAY, 18 OCTOBER 2012
0915 - 1215 hrs
Examination paper inserts:
Worksheet Q3
Notes for the guidance of candidates:
Non-programmable calculators may be used.
2. All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer.
Materials to be supplied by examination centres:

Candidate's examination workbook

Graph Paper

ELECTROTECHNOLOGY

Attempt SIX questions only.

All questions carry equal marks.

Marks for each part question are shown in brackets.

- 1. For the network shown in Fig Q1 calculate EACH of the following:
 - (a) the current in the indicating meter.

(8)

(8)

(b) the value to which the 1 $k\Omega$ resistor must be changed to make the current in the meter 1mA in the direction found in Q1(a).

Fig Q1

2. A circuit comprises a resistor of 800 Ω in series with a non-linear element whose characteristic is given by $I = 0.5V^{3/2}$ where I is in mA and V is in volts. The circuit is connected to a 12 V d.c. supply.

Determine EACH of the following:

(a) the circuit current; (6)

(b) the voltage across the non-linear element; (4)

(c) the value to which the 800 Ω resistor must be changed to make the circuit current 10 mA. (6)

3. A power silicon transistor with the characteristics given in Worksheet Q3 is operated from a 16 V d.c. supply. The operating ('quiescent') point is $I_b = 40$ mA and $I_c = 2$ A.

Determine EACH of the following:

- (a) draw the load line on the characteristics; (4)
- (b) (i) the value of the collector load resistance; (4)
 - (ii) the peak-to-peak variation in collector current if a signal of +/- 20 mA is applied to the base;
 - (iii) the corresponding variation in collector current; (2)

(2)

- (iv) the power dissipated in the transistor due to this signal. (4)
- 4. An a.c. series circuit consists of four elements as shown in Fig Q4. The power dissipated in the 50 Ω resistor is 200 W and the volt drops across the various parts of the circuit are as shown.

Calculate EACH of the following:

- (a) the values of C and L;
- (b) the overall power factor of the circuit; (5)
- (c) the kVAr for the inductance. (3)

Fig Q4

5.	and inductance 0.1 H is conne	ad each phase of which consists of a coil of resistance 40 Ω exted together with a delta connected load, each phase of 20 Ω in series with a 70 μF capacitor, to a supply of 440 V	
	Calculate EACH of the following	ng:	
	(a) the line current for each lo	ad;	(6)
	(b) the total line current drawn	n from the supply;	(6)
	(c) the overall power factor fo	r the two loads.	(4)
6.		nsformer is rated at 40 kVA full load output. The iron loss num efficiency when delivering 80% full load.	
	Calculate EACH of the following	ng:	
	(a) the full load copper loss;		(5)
	(b) the full load efficiency at 0	9.9 power factor;	(5)
	(c) the efficiency at 80% full l	oad and unity power factor.	(6)
7.	With reference to a double cage	induction motor:	
	(a) sketch a cross section through	ugh part of the rotor;	(4)
	(b) explain the operation of the	e motor from start up to operating speed;	(8)
	(c) sketch a torque speed curv	e for each cage on the same pair of axes.	(4)
8.	(a) Explain the operating princ	ciple of a double wound single phase power transformer.	(5)
	(b) State why the transformer	is rated in kVA rather than kW.	(3)
	(c) Explain why the transform designed frequency.	ner will overheat if operated at a frequency less than the	(5)
	(d) State the relationship between	een iron losses and copper losses for maximum efficiency.	(3)

(a) Explain what is meant by the expression single phasing.
(b) Explain the probable effect of single phasing on a squirrel cage motor operating on load.
(c) State ONE method by which a motor can be protected against the effects of single phasing.
(6)

WORKSHEET Q3

(This Worksheet must be returned with your answer book)

		COMMON EMITTE	ON EMI	TTE
se Current lb	_d/ :	CHARA	CTERIS	STC
units			SCALE FACTO	ACTO
		TYPE	per unit value	value
			1/6	10
100		1. Small Si	1 μА	1 m
		Z. Power SI	1 mA	1

Candidate's Name

Examination Centre.....