CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY -MARINE ENGINEER OFFICER

EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY

STCW 78 as amended CHIEF ENGINEER REG. III/2 (UNLIMITED)

041-33 - ELECTROTECHNOLOGY

THURSDAY, 20 OCTOBER 2016

0915 - 1215 hrs

Examination paper inserts:

Worksheet Q3

Notes for the guidance of candidates:

- 1. Non-programmable calculators may be used.
- 2. All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer.

Materials to be supplied by examination centres:

Candidate's examination workbook Graph paper

ELECTROTECHNOLOGY

Attempt SIX questions only.

All questions carry equal marks.

Marks for each part question are shown in brackets.

- 1. For the network shown in Fig Q1 calculate EACH of the following:
 - (a) the current drawn from each battery; (8)
 - (b) the potential difference across the 40 Ω resistor and the 50 Ω resistor; (4)
 - (c) the power dissipated in the 60 Ω resistor.

Fig Q1

(4)

2. The V/I characteristics of a non-linear resistor are given in Table Q2 below.

V (volts)	40	60	80	100	120	140
l (mA)	0.65	1.05	1.55	2.20	3.20	4.70

Table Q2

The non-linear resistor is connected in series with a paralleled pair of resistors of 40 K Ω and 60 K Ω and the overall circuit is supplied at 140 V. d.c.

Determine graphically or otherwise:

(a)	the current in the non-linear resistor;	(8)
(b)	the effective resistance of the non-linear resistor;	(4)
(c)	The current in the 40 K $ \alpha$ resistor.	(4)

3. A power silicon transistor with the characteristics given in Worksheet Q3 is operated from a 16 V d.c. supply. The operating ('quiescent') point is $I_b = 40$ mA and $I_c = 3.8$ A and the maximum collective current is 6 A.

(a)	Draw the load line on the characteristics.				
(b)	Determine EACH of the following:				
	(i)	the value of the collector load resistance;	(4)		
	(ii)	the peak-to-peak variation in collector current if a signal of +/- 40mA is applied to the base;	(2)		
	(iii)	the corresponding variation in collector voltage;	(2)		
	(iv)	the power dissipated in the transistor due to this signal.	(4)		

4. An a.c. series circuit consists of four elements as shown in Fig Q4. The power dissipated in the 50 Ω resistor is 200 W and the volt drops across the various parts of the circuit are as shown.

Calculate EACH of the following:

(a) the values of C and L;

(8)

(4)

(4)

- (b) the overall power factor of the circuit;
- (c) the kVAr for the inductance.

Fig Q4

5. A balanced three phase load is star connected and has a capacitor of 100 μ F in series with a resistor of 30 Ω in each phase. It is connected to a three phase supply of 440 V 50 Hz.

Calculate EACH of the following:

(a)	the line current;	(6)
(b)	the power factor of the load;	(4)

(c) the value of each of three identical delta connected resistors which, when connected to the same supply, will raise the overall power factor to 0.9.(6)

6. A 440 V/110 V single phase transformer takes a no load current of 5 A at power factor 0.25 lag. On load the transformer supplies 7.5 kVA at power factor 0.8 lag.

Calculate EACH of the following, for the on load condition:

(a)	the transformer secondary current;	(2)
(b)	the transformer primary current;	(8)
(c)	the primary power factor;	(3)
(d)	the efficiency of the transformer at this load.	(3)

7.	(a)	List	the various losses which occur in a squirrel cage motor on load.	(4)
	(b)	Sta	te, with reasons, which of these losses are:	
		(i)	independent of load current and speed;	(4)
		(ii)	dependent on load current;	(4)
		(iii)	dependent on speed.	(4)

8.	(a)	Sketch the circuit arrangement for a full wave three phase rectifier indicating on your sketch the current directions for both half cycles of one phase.	(8)
	(b)	Sketch the output waveform for the circuit in Q8(a).	(3)
	(c)	Add a smoothing capacitor to the rectifier circuit and explain why less smoothing capacitance is needed for the three phase rectifier set compared to a single phase rectifier.	(5)
9.	(a)	Explain what is meant by the term single phasing.	(6)
	(b)	State the probable effect of single phasing of a three phase induction motor operating on load.	(4)

(c) State ONE method by which a motor can be protected against the effects of single phasing. (6)