# CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY – MARINE ENGINEER OFFICER

# EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY

## STCW 95 CHIEF ENGINEER REG. III/2 (UNLIMITED)

#### 041-33 - ELECTROTECHNOLOGY

#### THURSDAY, 12 DECEMBER 2013

0915 - 1215 hrs

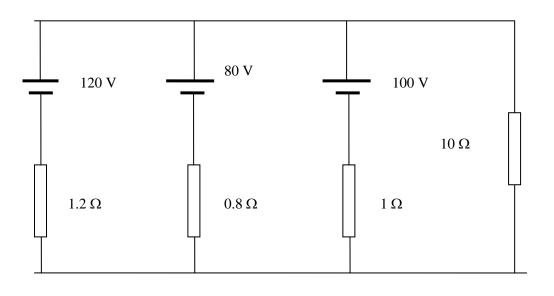
Examination paper inserts:

Notes for the guidance of candidates:

- 1. Non-programmable calculators may be used.
- 2. All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer.

Materials to be supplied by examination centres:

Candidate's examination workbook Graph Paper


## ELECTROTECHNOLOGY

## Attempt SIX questions only.

All questions carry equal marks.

# Marks for each part question are shown in brackets.

- 1. For the circuit shown in Fig Q1, calculate EACH of the following:
  - (a) the current supplied by each battery; (12)
  - (b) the load current; (2)
  - (c) the p.d. across the load.





2. A non-linear resistor whose characteristic is given by  $I = kV^{1/2}$  is connected in series with a variable resistance across a 120 V d.c. supply. When the variable resistance is set to 56  $\Omega$  the current in the circuit is 1A.

Calculate EACH of the following:

| (a) | the value of the constant k; | (6) | ) |
|-----|------------------------------|-----|---|
|-----|------------------------------|-----|---|

- (b) the value to which the variable resistance must be set to make the current 0.75 A; (6)
- (c) the power dissipated in the non-linear resistor when the current is 0.75 A. (4)

(2)

3. A simple voltage stabilizer circuit consists of a 1 Watt Zener diode and a series resistance R. The Zener diode has a breakdown voltage of 12 V and a slope resistance of 2  $\Omega$ . It requires a minimum current of 2 mA for successful stabilization. The unregulated d.c. input voltage can vary between 18 V and 24 V.

Calculate EACH of the following:

| (a) | the minimum value of the resistor R if the output current is zero and the input voltage is a maximum of 24 V;                   | (7) |
|-----|---------------------------------------------------------------------------------------------------------------------------------|-----|
| (b) | the maximum output current which can be drawn when the input voltage is 18 V if satisfactory stabilization is to be maintained; | (6) |
| (c) | the power dissipated in the Zener diode in Q3(b).                                                                               | (3) |

4. A single phase a.c. circuit comprises a coil of inductance 0.5 H and resistance 100  $\Omega$  in series with a capacitor 'C'. It is connected to 120 V 50 Hz and draws a current at a leading power factor. The volt drop across the coil is 150 V.

Determine EACH of the following:

| (a) | the current in the circuit;       | (4) |
|-----|-----------------------------------|-----|
| (b) | the value of the capacitor;       | (6) |
| (c) | the power factor of the circuit;  | (4) |
| (d) | the power dissipated in the coil. | (2) |

5. A balanced star connected three phase load has a coil of inductance 0.2 H and resistance  $50 \Omega$  in each phase. It is supplied at 415 V, 50 Hz.

Calculate EACH of the following:

| (a) | the line current;                                                                                                                            | (4) |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (b) | the power factor;                                                                                                                            | (3) |
| (c) | the value of each of three identical delta connected capacitors to be connected across the same supply to raise the power factor to 0.9 lag; | (6) |
| (d) | the new value of the line current.                                                                                                           | (3) |

- 6. Two three phase 415 V alternators supply a ship's load comprising:
  - lighting totalling 800 kW at unity power factor; and
  - motors totalling 1700 kW at power factor 0.7 lag.

One alternator supplies 1400 kVA at power factor 0.75 lag.

(a) Calculate EACH of the following for the other alternator:

|            | (i) the kVA output;                                                                                                                                  | (6)        |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|            | (ii) the power factor;                                                                                                                               | (2)        |
|            | (iii) the line output current.                                                                                                                       | (2)        |
| (b)        | An overexcited synchronous motor is now added to the system to raise the overall power factor of the system to 0.9 lag.                              |            |
|            | Calculate the power factor at which it must operate, if the motor takes 300 kW.                                                                      | (6)        |
|            |                                                                                                                                                      |            |
|            |                                                                                                                                                      |            |
| (a)        | Sketch the circuit diagram for a three-phase full wave rectifier indicating on your sketch the current directions for both half cycles of one phase. | (8)        |
| (a)<br>(b) |                                                                                                                                                      | (8)<br>(3) |

# 8. With reference to an a.c. generator used in marine practice:

7.

| (a) | derive an expression for the frequency of the generated emf in terms of speed and number of poles;                                                               | (3) |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (b) | explain the difference between the generated emf "E" and the terminal voltage "V" if the resistance of the stator output windings is low enough to be neglected; | (5) |
| (c) | state an expression for the regulation of the generator in terms of E and V;                                                                                     | (3) |
| (d) | explain the effect on the terminal voltage of increasing the load power factor if the excitation and load ouput power are fixed.                                 | (5) |

| 9. | (a) | Explain how torque is produced in a 3 phase squirrel cage induction motor.                                                                                    | (5) |
|----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | (b) | State why the starting current is several times higher than the full load current.                                                                            | (3) |
|    | (c) | State why the power factor is very low on starting.                                                                                                           | (3) |
|    | (d) | Describe ONE method of construction by means of which the starting power factor may be raised, the starting current lowered and the starting torque improved. | (5) |