NAVAL ARCHITECTURE I

MARLH 10
Attempt SIX questions only
All questions carry equal marks
Marks for each part question are shown in brackets

1. A ship of length 120 m displaces 11750 tonne when floating in sea water of density $1025 \mathrm{~kg} / \mathrm{m}^{3}$. The centre of gravity is 2.5 m above the centre of buoyancy and the waterplane is defined by the following equidistant half breadths given in Table Q1:

Station	AP	1	2	3	4	5	6	7	FP
Half- breadth (m)	3.3	6.8	7.6	8.1	8.1	8.0	6.6	2.8	0

Table Q1
Calculate EACH of the following:
(a) the area of the waterplane;
(b) the position of the centroid of the waterplane from midships;
(c) the second moment of area of the waterplane about a transverse axis through the centroid;
(d) the moment to change trim one centimetre (MCT 1 cm).
2. A ship of breadth 20 m has a displacement of 13500 tonne and a metacentric height of 1.962 m when floating upright in sea water of density $1025 \mathrm{~kg} / \mathrm{m}^{3}$.

A rectangular oil fuel bunker 4 m long, 20 m wide and 10 m deep is divided on the centreline by a longitudinal oiltight bulkhead to form two equal tanks which are both full of fuel oil of density $900 \mathrm{~kg} / \mathrm{m}^{3}$.

An adjoining rectangular cargo hold of length 18 m and breadth 20 m is empty.
The transverse bulkhead separating the starboard oil fuel bunker and the hold ruptures at the bottom so that liquid flows freely between the bunker and hold.

Calculate the angle to which the ship will heel.
3. A ship of length 130 m is loaded as shown in Table Q3(a).

Item	Mass (tonne)	Lcg from midships (m)
lightship	3500	1.85 aft
cargo	8100	3.7 forward
oil fuel	800	6.5 aft
stores	25	13.8 forward
fresh water	25	19.4 forward
crew \& effects	10	midships

Table Q3(a)
The following hydrostatic data in Table Q3(b) can be assumed to have a linear relationship between the draughts shown.

Draught (m)	Displacement (tonne)	LCB from midships (m)	MCT 1cm $($ tm)	LCF from midships (m)
8.0	14000	1.8 forward	160	1.52 aft
7.0	11800	2.3 forward	145	1.22 aft

Table Q3(b)
Calculate the final end draughts.
4. A box shaped vessel is 80 m long, 12 m wide and floats at a draught of 4 m . A full width midship compartment 15 m long is bilged and this results in the draught increasing to 4.75 m .

Calculate EACH of the following, using the lost buoyancy method:
(a) the permeability of the compartment;
(b) the change in metacentric height due to bilging the compartment.
5. The following data refer to two geometrically similar ships:

Ship	Length (m)	Wetted surface area $\left(\mathrm{m}^{2}\right)$	Displacement (tonne)	Friction coefficient f (sea water)	Speed index n
Ship A	122	2680	8775	1.4275	1.825
Ship B			16250	1.4213	1.825

Fig Q5 shows the results of a progressive speed trial for ship A.
Calculate the shaft power required for ship B travelling at a speed of 18.5 knots, given that the propulsive coefficient for both ships is 0.6 .

Note: \quad friction coefficient to be used with speed in m / s

Fig Q5
6. The following data applies to a ship operating on a particular voyage with a propeller of 6 m diameter having a pitch ratio of 0.95 .

propeller speed	$1.8 \mathrm{rev} / \mathrm{sec}$
real slip	34%
apparent slip	7%
shaft power	10500 kW
specific fuel consumption	$0.210 \mathrm{~kg} / \mathrm{kW} \mathrm{hr}$
Calculate EACH of the following:	

(a) the ship speed in knots;
(b) the Taylor wake fraction;
(c) the reduced speed at which the ship should travel in order to halve the voyage consumption;
(d) the voyage distance if the voyage takes 3 days longer at the reduced speed;
(e) the amount of fuel required for the voyage at the reduced speed.
7. (a) Describe how the variable wake in which a propeller works may lead to vibration problems at the aft end.
(b) Explain how a highly skewed propeller can reduce the problem of propeller excited vibration.
(c) Discuss the validity of the following statement:
"The propeller design parameters that maximise efficiency will tend to lead to vibration problems."
(d) Describe how the after end structure is constructed to resist vibration.
8. (a) Define critical temperature and boiling point and hence show how some liquefied gases may be transported fully pressurised, whilst others need to be carried fully refrigerated.
(b) State the basic differences in construction of fully pressurised and fully refrigerated systems for the carriage of liquefied gas at sea.
(c) Compare the membrane tank and independent tank systems of construction.
9. (a) Sketch transverse cross sections of a ship, showing the forces acting when the ship is lying at a large angle of heel due to EACH of the following, indicating the positions of the initial and final centres of buoyancy and gravity and the initial position of the transverse metacentre:
(i) an external force (wind or wave);
(2)
(b) Sketch and label typical statical stability curves for EACH of the following ship loading conditions:
(i) the ship's centre of gravity on the centreline and the ship having a positive metacentric height;
(ii) the ship's centre of gravity off the centreline and the ship having a positive metacentric height;
(iii) the ship's centre of gravity on the centreline and the ship having a negative metacentric height.

