CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY – MARINE ENGINEER OFFICER

EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY

STCW 95 CHIEF ENGINEER REG. III/2 (UNLIMITED)

041-31 – APPLIED MECHANICS

TUESDAY, 13 DECEMBER 2011

1315 - 1615 hrs

Examination paper inserts:

Notes for the guidance of candidates:

- 1. Non-programmable calculators may be used.
- 2. All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer.

Materials to be supplied by colleges:

Candidate's examination workbook Graph paper

APPLIED MECHANICS

Attempt SIX questions only

All questions carry equal marks

Marks for each part question are shown in brackets

1. A steel bar, 50 mm diameter and 300 mm long is placed between two supports with an end clearance of 0.3 mm. The temperature is then increased by 180°C.

Calculate EACH of the following:

(a)	the diment strange in the hear if the surrounder and ments of atter winds	(\mathbf{C})
(a)	the direct stress in the partil the supports are perfectivingid:	(0)
()	···· ·································	(~)

- (b) the direct stress in the bar if the supports are elastic and the movement of one support relative to the other is 1 µm per kN of force applied to them.
 (10)
- Note: Modulus of Elasticity for Steel = 200 GN/m^2 Coefficient of Linear Elasticity for Steel = $11 \mu \text{m/m}^\circ \text{C}$
- 2. A weather balloon of total mass 18 kg is at a height of 120 m and moving vertically upwards at a constant velocity of 6 m/s when an instrument module of mass 2 kg breaks free.

Calculate EACH of the following:

(a)	the time taken for the module to reach the ground;	(4)
(b)	the velocity at which the module strikes the ground;	(4)
(c)	the subsequent acceleration of the balloon.	(8)

3. A hollow shaft transmits 110 kW at 1800 rev/min. The shaft is 1.5 m long and has an outside diameter of 50 mm and an internal diameter of 36 mm.

Calculate EACH of the following:

- (a) the angle of twist, in degrees, between each end of the shaft; (8)
- (b) the maximum torsional stress in the shaft, stating where it occurs; (4)
- (c) the minimum torsional stress in the shaft, stating where it occurs. (4)

Note: Modulus of Rigidity for shaft material = 82 GN/m^2 .

4. A short vertical column with the <u>horizontal</u> cross section shown in Fig Q4 has a central vertical compressive load of 120 kN.

Calculate the maximum additional vertical load that can be placed at point A without producing tensile stress at any part of the section.

(16)

Horizontal cross section (not to scale)

5. A circular flywheel of mass 28 kg is fixed to a horizontal shaft of mass 8 kg and 40 mm diameter which is free to rotate in its bearings against a constant friction torque of 2.1 Nm.

A light cord is wound around the shaft and a mass of 18 kg is suspended at the free end of the cord. When the system is released from rest the mass descends 1.2 m in 16 seconds with uniform acceleration.

Calculate EACH of the following:

(a)	the moment of inertia of the flywheel and shaft assembly;	(13)

(b) the radius of gyration of the flywheel and shaft assembly. (3)

Fig Q4

6. A circular cam rotates at 360 rev/min and is offset from the centre of rotation by 14 mm. The cam follower has a mass of 0.6 kg and moves with simple harmonic motion.

Calculate EACH of the following:

(a)	the maximum velocity of the cam follower;	(3)
(b)	the maximum acceleration of the cam follower;	(3)
(c)	the velocity of the cam follower at ³ / ₄ lift;	(4)
(d)	the speed at which the inertia force on the cam follower would be equal to its own weight.	(6)

7. A tank containing lubricating oil of relative density 0.88 has two outlet orifices on one side of the tank. The upper orifice is 16 mm diameter and has its centre 1.4 m below the oil surface. The lower orifice is 22 mm diameter and has its centre 3.0 m below the oil surface. Oil is supplied to the tank at 2 kg/s to maintain a constant oil level in the tank.

Calculate EACH of the following:

(a)	the mass flow rate of oil from the	16 mm diameter orifice;	(8)
(b)	the coefficient of velocity for the	22 mm diameter orifice.	(8)
Note	e: For 16 mm diameter orifice:	coefficient of velocity = 0.98 coefficient of contraction = 0.68	
	For 22 mm diameter orifice:	coefficient of contraction = 0.68	

8. A basic flapper/nozzle device is shown in Fig Q8. The pneumatic signal for the input bellows unit is proportional to the measured temperature within the range 0-150°C. The output signal range is to be 20-100 kN/m².

The characteristic of the input bellows is 4 μ m/⁰C, and the characteristic of the nozzle is 0.2 kN/m² per μ m of flapper movement.

Calculate EACH of the following:

(a)	the flapper movement at the nozzle for 100% input change;	(2)
(b)	the resulting change in output;	(2)
(c)	the gain of the device;	(2)

(d) the new setting of x, the distance from the pivot to the nozzle, to achieve a gain of 0.5; (5)

(5)

(e) the output pressure at 85° C with a gain of 0.5 if the output pressure was 50 kN/m² at a temperature of 55° C.

Fig Q8

9. A pump has a suction lift of 400 mm and it delivers 110 tonnes of sea water per hour to a height of 8 m above the pump discharge.

The delivery pipe has a diameter of 160 mm and is 36 m long. The friction coefficient for Darcy's formula is 0.01. Friction and Kinetic Energy in the suction pipe may be ignored.

Calculate EACH of the following:

(a)	the power output of the pump;	(10)
-----	-------------------------------	------

(6)

(b) the pressure at the pump discharge.

Note: Density of Sea Water = 1025 kg/m^3